首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Multicomponent model of deformation and detachment of a biofilm under fluid flow
【2h】

Multicomponent model of deformation and detachment of a biofilm under fluid flow

机译:流体流动下生物膜变形和脱离的多组分模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between and m s−1 which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than . Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.
机译:描述了一种新颖的生物膜模型,该模型可将生物膜中的细菌,细胞外聚合物(EPS)和溶剂相系统耦合。这使得能够研究各个相的流变学对响应流体流动以及不同相之间的相互作用的生物膜变形的贡献。该模型基于热力学第一定律和第二定律,使用能量变分法和相场法导出。相场耦合用于模拟生物膜的结构变化。为了有效地计算模型的数值解,实施了一种新开发的无条件能量稳定数值分裂方案。模型模拟预测了与m s -1 之间的流速的生物膜内聚破坏,这与实验一致。模拟预测生物膜变形导致EPS的彩带形成,该EPS表现出粘性主导的机械响应,且EPS的粘度小于。较高的EPS粘度为生物膜提供了更大的抵抗变形和流动的抵抗力。此外,仿真表明,较高的EPS弹性会导致形成具有更易于分离的复杂几何形状的拖缆。这些模型预测显示与实验观察在质量上吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号