首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach
【2h】

Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach

机译:了解复杂水动力环境中的大型藻类扩散:结合的种群遗传和物理建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes.
机译:大型藻类种群中的基因流动会受到孢子或配子扩散的强烈影响。反过来,这受电流和特定植物繁殖策略影响的卷积影响。尽管一些研究已经证明了大型藻类种群在广泛的空间尺度上的遗传变异性,但相关的当前数据通常在空间和时间上都难以分辨。在这项研究中,我们结合了种群遗传学分析和高分辨率水动力模型,研究了Strangford窄带海带指状海带种群之间的潜在连通性,该海带是一条以强电流连接大型半封闭海域为特征的狭窄通道,斯特兰福德湖,到爱尔兰海。基于六个微卫星标记的遗传结构水平非常低,表明基因流动水平很高,并且按距离隔离,在这种情况下,人口更容易与地理上较近的人口交换移民,但偶尔会有远距离分散。颗粒追踪模型证实了这一点,该模型表明,尽管大部分孢子在释放部位附近沉降,但仍有可能扩散超过几公里。这种结合的种群遗传和建模方法表明,在Strangford海湾入口处的复杂水动力环境可以促进扩散,其规模特别是针对指骨木乃至大多数大型藻类所提出的。该研究证明了综合的物理-生物学方法在预测由人为引起的沿海地区变化等因素引起的生态变化中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号