首页> 美国卫生研究院文献>The Journal of Physiology >Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro
【2h】

Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro

机译:新生大鼠延髓中呼吸节律发生神经元对CO2 / H +化学感受的机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigated mechanisms of CO2/H+ chemoreception in the respiratory centre of the medulla by measuring membrane potentials of pre-inspiratory neurons, which are putative respiratory rhythm generators, in the brainstem–spinal cord preparation of the neonatal rat. Neuronal response was tested by changing superfusate CO2 concentration from 2% to 8% at constant HCO3 concentration (26 mm) or by changing pH from 7.8 to 7.2 by reducing HCO3 concentration at constant CO2 (5%). Both respiratory and metabolic acidosis lead to depolarization of neurons with increased excitatory synaptic input and increased burst rate. Respiratory acidosis potentiated the amplitude of the neuronal drive potential. In the presence of tetrodotoxin (TTX), membrane depolarization persisted during respiratory and metabolic acidosis. However, the depolarization was smaller than that before application of TTX, which suggests that some neurons are intrinsically, and others synaptically, chemosensitive to CO2/H+. Application of Ba2+ blocked membrane depolarization by respiratory acidosis, whereas significant depolarization in response to metabolic acidosis still remained after application of Cd2+ and Ba2+. We concluded that the intrinsic responses to CO2/H+changes were mediated by potassium channels during respiratory acidosis, and that some other mechanisms operate during metabolic acidosis. In low-Ca2+, high-Mg2+ solution, an increased CO2 concentration induced a membrane depolarization with a simultaneous increase of the burst rate. Pre-inspiratory neurons could adapt their baseline membrane potential to external CO2/H+ changes by integration of these mechanisms to modulate their burst rates. Thus, pre-inspiratory neurons might play an important role in modulation of respiratory rhythm by central chemoreception in the brainstem–spinal cord preparation.
机译:我们通过测量新生儿脑干–脊髓的吸气前神经元(可能是呼吸节律的产生者)的膜电位,研究了延髓呼吸中心的CO2 / H + 化学感受的机制。鼠。通过在恒定HCO3 -浓度(26 mm)下将超熔液CO2浓度从2%更改为8%,或通过降低HCO3 -将pH从7.8更改为7.2,来测试神经元反应在恒定CO2(5%)下的浓度。呼吸性和代谢性酸中毒都会导致神经元去极化,兴奋性突触输入增加,猝发速率增加。呼吸性酸中毒增强了神经元驱动电位的幅度。在河豚毒素(TTX)的存在下,呼吸和代谢性酸中毒持续发生膜去极化。然而,去极化作用小于应用TTX之前的去极化作用,这表明某些神经元对CO2 / H + 具有化学敏感性,而其他神经元具有突触性。 Ba 2 + 的应用阻止了呼吸性酸中毒引起的膜去极化,而应用Cd 2 + 和Ba 2+ < / sup>。我们得出结论,在呼吸性酸中毒过程中,钾离子通道介导了对CO2 / H + 变化的内在反应,而在代谢性酸中毒过程中,其他一些机制起作用。在低Ca 2 + ,高Mg 2 + 溶液中,增加的CO2浓度会引起膜去极化并同时增加破裂速率。吸气前神经元可以通过整合这些机制来调节其爆发速率,从而使其基线膜电位适应外部CO2 / H + 变化。因此,吸气前神经元可能在脑干-脊髓准备过程中通过中央化学感受调节呼吸节律中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号