首页> 美国卫生研究院文献>The Journal of Physiology >Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat
【2h】

Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat

机译:大鼠明胶质神经元突波频率适应的机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using tight-seal recordings from rat spinal cord slices, intracellular labelling and computer simulation, we analysed the mechanisms of spike frequency adaptation in substantia gelatinosa (SG) neurones. Adapting-firing neurones (AFNs) generated short bursts of spikes during sustained depolarization and were mostly found in lateral SG. The firing pattern and the shape of single spikes did not change after substitution of Ca2+ with Co2+, Mg2+ or Cd2+ indicating that Ca2+-dependent conductances do not contribute to adapting firing. Transient KA current was small and completely inactivated at resting potential suggesting that adapting firing was mainly generated by voltage-gated Na+ and delayed-rectifier K+ (KDR) currents. Although these currents were similar to those previously described in tonic-firing neurones (TFNs), we found that Na+ and KDR currents were smaller in AFNs. Discharge pattern in TFNs could be reversibly converted into that typical of AFNs in the presence of tetrodotoxin but not tetraethylammonium, suggesting that lower Na+ conductance is more critical for the appearance of firing adaptation. Intracellularly labelled AFNs showed specific morphological features and preserved long extensively branching axons, indicating that smaller Na+ conductance could not result from the axon cut. Computer simulation has further revealed that down-regulation of Na+ conductance represents an effective mechanism for the induction of firing adaptation. It is suggested that the cell-specific regulation of Na+ channel expression can be an important factor underlying the diversity of firing patterns in SG neurones.
机译:使用大鼠脊髓切片的紧密密封记录,细胞内标记和计算机模拟,我们分析了明胶质(SG)神经元中峰频率适应的机制。适应性发射神经元(AFNs)在持续去极化过程中产生短时的尖峰爆发,且多见于SG外侧。将Ca 2 + 替换为Co 2 + ,Mg 2 + 或Cd <后,焙烧模式和单个尖峰的形状均未改变。 sup> 2 + 表示依赖Ca 2 + 的电导对适应放电没有帮助。瞬态KA电流很小,并且在静止电位时完全失活,这表明适应点火主要由电压门控Na + 和延迟整流器K + (KDR)电流产生。尽管这些电流与先前在强直性神经元(TFNs)中描述的电流相似,但我们发现AFN中的Na + 和KDR电流较小。在存在河豚毒素但不存在四乙铵的情况下,TFNs中的放电模式可以可逆地转换为AFNs的典型模式,这表明较低的Na + 电导率对于点火适应性的出现更为关键。细胞内标记的AFN表现出特定的形态学特征,并保留了长而广泛的分支轴突,这表明较小的Na + 电导不能由轴突切割产生。计算机模拟进一步揭示,Na + 电导的下调代表了诱导射击适应的有效机制。提示Na + 通道表达的细胞特异性调控可能是导致SG神经元放电方式多样性的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号