首页> 美国卫生研究院文献>The Journal of Physiology >A mathematical model for counter-current multiplications in the swim-bladder.
【2h】

A mathematical model for counter-current multiplications in the swim-bladder.

机译:游泳膀胱逆流乘法的数学模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1. A computer model for swim-bladder gas filling has been developed. Phenomenological descriptions of the Root effect (pH-dependent O2 capacity of fish haemoglobin), of the lactic acid production in the gas gland and of the geometry of the rete mirabile are incorporated in the general counter-current equations to give a comprehensive model of gas filling. 2. It is known that pH along the rete is not constant, as supposed in an earlier gas-filling model. It is also known that the Root shift reaction has a different half-time model. It is also known that the Root shift reaction has a different half-time depending on whether the haemoglobin absorbs or releases O2. These particular effects are accounted for in the present model. 3. The model gives gas filling rate and maximum swim-bladder pressure for CO2, O2 and N2. The partial pressure of these gases as well as the concentration of lactic acid and the pH along the rete are also calculated. 4. The model reproduces quite accurately experimental values for gas-filling rate in eel, together with lactic acid, CO2 and O2 concentrations measured at the rete end-points. There is also good correlation between maximum predicted stable swim-bladder pressure and maximum recorded depth for four fishes investigated (r=0-937; P=0-06). 5. The model predicts an enhancement of O2 filling rate and maximum swim-bladder pressure of at least 4 when the reaction rates of the Root shift in eel haemoglobin are 0-2 sec (Root-off) and 10 sec (Root-on), as compared to an instantaneous Root shift. 6. With a swim-bladder pressure of 1 atm and Root-shift reaction rates of equal magnitude, the po2-profile along the rete is nearly linear. When the reaction rates are such as found experimentally in eel haemoglobin, the po2 along the rete is non-linear, with a maximum of approximately 2 atm near the bladder pole of the rete. An experimental verification of this maximum will constitute a crucial test of the model. 7. The calculations show that blood flow through rete can regulate both gas-filling rate and stable swim-bladder pressure. At high pressure, the main factor limiting gas filling is loss of gas through back diffusion along the rete. 8. Maximum po2 in the swim-bladder is highly dependent upon the Root effect. If the Root effect persists up to about 100 atm, as seems to be the case blue hake, maximum po2 is more than 200 atm. When the Root effect is abolished at 10 atm, as is expected in eel, the maximum po2 drops to about 30 atm. 9. The pN2 in the bladder can reach 10-15 atm depending on blood flow, whereas PCO2 will not exceed 1 atm.
机译:1.开发了一种用于游泳膀胱充气的计算机模型。将根效应(鱼血红蛋白的pH依赖于O2的能力,取决于氧的O2容量),气腺中的乳酸生成以及奇异果体的几何学的现象学描述包含在一般的逆流方程中,以提供气体的综合模型填充。 2.众所周知,沿网格的pH值不是恒定的,就像早期的充气模型所假定的那样。还已知根迁移反应具有不同的半衰期模型。还已知根转移反应具有不同的半衰期,这取决于血红蛋白是吸收还是释放O 2。在本模型中考虑了这些特殊的影响。 3.该模型给出了CO2,O2和N2的气体填充率和最大游泳囊压力。还计算了这些气体的分压以及沿网版的乳酸浓度和pH值。 4.该模型非常准确地再现了鳗鱼充气率的实验值,以及在终点测量的乳酸,CO2和O2浓度。在研究的四条鱼类的最大预测稳定游泳膀胱压力与最大记录深度之间也存在良好的相关性(r = 0-937; P = 0-06)。 5.该模型预测,当鳗鱼血红蛋白的根移动的反应速率为0-2秒(根断开)和10秒(根接通)时,O2填充速率和最大游泳膀胱压力的提高至少为4。 ,与瞬时Root shift相比。 6.在1个大气压的游泳囊压力和相等幅度的根移反应速率下,沿着网点的po2-轮廓几乎是线性的。当反应速率如在鳗鱼血红蛋白中的实验发现时,沿网点的po2是非线性的,在网点的膀胱极附近最大约为2 atm。这个最大值的实验验证将构成模型的关键测试。 7.计算结果表明,流经网眼的血液既可以调节充气速度,又可以调节稳定的游泳膀胱压力。在高压下,限制气体填充的主要因素是由于沿网状体向后扩散而造成的气体损失。 8.游泳囊中的最大po2高度依赖于根效应。如果根效应一直持续到大约100 atm(如蓝色鳕鱼),则最大po2大于200 atm。如在鳗鱼中所预期的,在10 atm消除根效应时,最大po2降至约30 atm。 9.取决于血液流量,膀胱中的pN2可以达到10-15 atm,而PCO2则不会超过1 atm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号