首页> 外文学位 >A MATHEMATICAL MODEL OF THE URINE CONCENTRATING MECHANISM (KIDNEY, COUNTER-CURRENT SYSTEM, INTEGRAL EQUATIONS).
【24h】

A MATHEMATICAL MODEL OF THE URINE CONCENTRATING MECHANISM (KIDNEY, COUNTER-CURRENT SYSTEM, INTEGRAL EQUATIONS).

机译:尿液浓缩机制(肾脏,逆流系统,积分方程)的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

After a brief survey of the physiology of the urine concentrating mechanism of the mammalian kidney, a simple model that was developed by Charles Peskin for a single nephron is introduced (F. C. Hoppensteadt and C. S. Peskin, Mathematics in Medicine and the Life Sciences in preparation ). This model is found to have a concentrating limit of a factor of e over blood plasma osmolality, regardless of the length of the nephron or the type of kinetics employed for NaCl reabsorption from the ascending limb. In order to represent the decreasing loop of Henle population as a function of medullary depth, Peskin's model is here extended to a multinephron model, resulting in a system of three highly nonlinear integral equations. The equations exhibit a multiplier effect which greatly enhances concentrating capability. Using the approximate loop distribution of the rat, the model produces a sigmoidal osmolality profile similar to the profiles found in tissue-slice studies of rat kidneys. These model calculations suggest that the decreasing nephron population found in vivo and the corresponding decrease in transverse medullary area as a function of medullary depth are important factors in the concentrating mechanism of the mammalian kidney.;Existence and uniqueness results are obtained for the system of integral equations. Using the Schauder principle it is shown that solutions exist for a general class of NaCl reabsorption kinetics. Uniqueness of solutions is obtained for first-order and Michaelis-Menten kinetics in the case of very low reabsorption rates. Uniqueness of solutions to a prototype problem is established for the case of very high reabsorption rates.
机译:在对哺乳动物肾脏的尿液浓缩机制进行了简要的生理调查后,介绍了由Charles Peskin为单个肾单位开发的简单模型(F.C.Hoppensteadt和C.S.Peskin,正在准备中的医学数学和生命科学)。发现该模型的浓度极限超过血浆渗透压,而肾单位的长度或从上升肢体吸收NaCl所用的动力学类型无关。为了将Henle种群的递减环表示为髓深度的函数,Peskin模型在此处扩展为多肾单位模型,从而形成了三个高度非线性积分方程组。这些方程式表现出倍增效应,大大提高了浓缩能力。使用大鼠的近似环路分布,该模型产生的S型渗透压分布图类似于在大鼠肾脏的组织切片研究中发现的分布图。这些模型计算表明,体内发现的肾单位数量的减少以及髓质横断面积的相应减少是髓质深度的函数,这是哺乳动物肾脏富集机制的重要因素。方程。使用Schauder原理表明,存在针对一般类别的NaCl重吸收动力学的解决方案。在极低的重吸收速率下,对于一阶动力学和Michaelis-Menten动力学,获得的溶液具有唯一性。对于非常高的重吸收率,将建立原型问题解决方案的唯一性。

著录项

  • 作者

    LAYTON, HAROLD ERICK.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号