首页> 美国卫生研究院文献>Chemical Science >Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T
【2h】

Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T

机译:赖氨酸羰基化是氯胺T活化细胞色素c的过氧化物酶活化的一个先前未被认识的贡献者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The peroxidase activity of cytochrome c (cyt c) plays a key role during apoptosis. Peroxidase catalysis requires a vacant Fe coordination site, i.e., cyt c must undergo an activation process involving structural changes that rupture the native Met80–Fe contact. A common strategy for dissociating this bond is the conversion of Met80 to sulfoxide (MetO). It is widely believed that this MetO formation in itself is sufficient for cyt c activation. This notion originates from studies on chloramine-T-treated cyt c (CT-cyt c) which represents a standard model for the peroxidase activated state. CT-cyt c is considered to be a “clean” species that has undergone selective MetO formation, without any other modifications. Using optical, chromatographic, and mass spectrometry techniques, the current work demonstrates that CT-induced activation of cyt c is more complicated than previously thought. MetO formation alone results in only marginal peroxidase activity, because dissociation of the Met80–Fe bond triggers alternative ligation scenarios where Lys residues interfere with access to the heme. We found that CT causes not only MetO formation, but also carbonylation of several Lys residues. Carbonylation is associated with –1 Da mass shifts that have gone undetected in the CT-cyt c literature. Proteoforms possessing both MetO and Lys carbonylation exhibit almost fourfold higher peroxidase activity than those with MetO alone. Carbonylation abrogates the capability of Lys to coordinate the heme, thereby freeing up the distal site as required for an active peroxidase. Previous studies on CT-cyt c may have inadvertently examined carbonylated proteoforms, potentially misattributing effects of carbonylation to solely MetO formation.
机译:细胞色素c(cyt c)的过氧化物酶活性在细胞凋亡过程中起关键作用。过氧化物酶催化需要一个空的Fe配位位点,即cyt c必须经历一个激活过程,该过程涉及破坏天然Met80-Fe接触的结构变化。解离该键的常见策略是将Met80转化为亚砜(MetO)。普遍认为,这种MetO形成本身足以进行cyt c活化。该概念源自对氯胺-T处理的cyt c(CT-cyt c)的研究,其代表过氧化物酶活化状态的标准模型。 CT-cyt c被认为是经过选择性MetO形成而没有任何其他修饰的“干净”物种。使用光学,色谱和质谱技术,当前工作证明CT诱导的cyt c激活比以前认为的更为复杂。 MetO的形成仅导致边缘的过氧化物酶活性,因为Met80-Fe键的解离会触发其他连接方案,其中Lys残基会干扰血红素的获得。我们发现,CT不仅会引起MetO的形成,而且还会引起几个Lys残基的羰基化。羰基化与–1 Da质量转移相关联,而CT-cyt c文献中尚未发现。同时具有MetO和Lys羰基化作用的蛋白形式的过氧化物酶活性比仅具有MetO的蛋白形式高几乎四倍。羰基化消除了Lys调节血红素的能力,从而释放了活性过氧化物酶所需的远端位点。以前对CT-cyt c的研究可能无意中检查了羰基化的蛋白形式,可能将羰基化的作用误分配为仅形成MetO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号