首页> 美国卫生研究院文献>Chemical Science >OH formation and H2 adsorption at the liquid water–Pt(111) interface
【2h】

OH formation and H2 adsorption at the liquid water–Pt(111) interface

机译:液态水–Pt(111)界面上的OH形成和H2吸附

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The liquid water–Pt(111) interface is studied with constant temperature ab initio molecular dynamics to explore the importance of liquid water dynamics of catalytic reactions such as the oxygen reduction reaction in PEM fuel cells. The structure and energetics of hydroxyls formed at the liquid water–Pt(111) interface are found to be significantly different from those of the hydroxyl formed on a bare Pt(111) surface and the hydroxyl formed on a Pt(111) surface with a static water layer. We identify 1/12 ML *OH, 5/12 ML *OH and 2/3 ML *OH as particularly stable hydroxyl coverages in highly dynamic liquid water environments, which – contrary to static water–hydroxyl models – contain adjacent uncovered Pt sites. Atomic surface oxygen is found to be unstable in the presence of liquid water, in contrast to static atomic level simulations. These results give an improved understanding of hydroxide and surface oxide formation from Pt(111) cyclic voltammetry and allow us to draw detailed connections between the electrostatic potential and the interface structure. The study of hydrogen adsorption at the liquid water–Pt(111) interface finds competitive adsorption between the adsorbed hydrogen atoms and water molecules. This does not adhere with experimental observations, and this indicates that the Pt(111) surface has to be negatively charged for a correct description of the liquid water–Pt(111) interface at potentials where hydrogen adsorption occurs.
机译:利用恒定的从头算分子动力学研究了液态水-Pt(111)界面,以探索催化反应(例如PEM燃料电池中的氧还原反应)的液态水动力学的重要性。发现在液态水-Pt(111)界面上形成的羟基的结构和能量与在裸露的Pt(111)表面上形成的羟基和在Pt(111)表面上形成的羟基具有明显不同。静态水层。我们将1/12 ML * OH,5/12 ML * OH和2/3 ML * OH确定为在高度动态的液态水环境中特别稳定的羟基覆盖度,与静态水-羟基模型相反,该环境包含相邻的未发现Pt部位。与静态原子水平模拟相反,发现在液态水存在下,原子表面的氧不稳定。这些结果使人们更好地理解了Pt(111)循环伏安法对氢氧化物和表面氧化物的形成,并允许我们绘制静电势与界面结构之间的详细联系。对液态水-Pt(111)界面上氢吸附的研究发现,吸附的氢原子与水分子之间存在竞争性吸附。这与实验观察结果不一致,这表明为了正确描述液态水-Pt(111)界面在发生氢吸附的电势下,Pt(111)表面必须带负电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号