首页> 美国卫生研究院文献>Chemical Science >Predicting electronic structure properties of transition metal complexes with neural networks
【2h】

Predicting electronic structure properties of transition metal complexes with neural networks

机译:用神经网络预测过渡金属配合物的电子结构性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-throughput computational screening has emerged as a critical component of materials discovery. Direct density functional theory (DFT) simulation of inorganic materials and molecular transition metal complexes is often used to describe subtle trends in inorganic bonding and spin-state ordering, but these calculations are computationally costly and properties are sensitive to the exchange–correlation functional employed. To begin to overcome these challenges, we trained artificial neural networks (ANNs) to predict quantum-mechanically-derived properties, including spin-state ordering, sensitivity to Hartree–Fock exchange, and spin-state specific bond lengths in transition metal complexes. Our ANN is trained on a small set of inorganic-chemistry-appropriate empirical inputs that are both maximally transferable and do not require precise three-dimensional structural information for prediction. Using these descriptors, our ANN predicts spin-state splittings of single-site transition metal complexes (i.e., Cr–Ni) at arbitrary amounts of Hartree–Fock exchange to within 3 kcal mol–1 accuracy of DFT calculations. Our exchange-sensitivity ANN enables improved predictions on a diverse test set of experimentally-characterized transition metal complexes by extrapolation from semi-local DFT to hybrid DFT. The ANN also outperforms other machine learning models (i.e., support vector regression and kernel ridge regression), demonstrating particularly improved performance in transferability, as measured by prediction errors on the diverse test set. We establish the value of new uncertainty quantification tools to estimate ANN prediction uncertainty in computational chemistry, and we provide additional heuristics for identification of when a compound of interest is likely to be poorly predicted by the ANN. The ANNs developed in this work provide a strategy for screening transition metal complexes both with direct ANN prediction and with improved structure generation for validation with first principles simulation.
机译:高通量计算筛选已成为材料发现的重要组成部分。无机材料和分子过渡金属配合物的直接密度泛函理论(DFT)模拟通常用于描述无机键合和自旋态有序的细微趋势,但是这些计算在计算上是昂贵的,并且属性对所使用的交换-相关函数敏感。为了克服这些挑战,我们训练了人工神经网络(ANN)来预测量子力学衍生的特性,包括自旋态有序,对Hartree-Fock交换的敏感性以及过渡金属络合物中自旋态的特定键长。我们的人工神经网络接受了一小部分无机化学适合的经验输入,这些输入既可以最大程度地转移,又不需要精确的三维结构信息即可进行预测。使用这些描述符,我们的ANN可以预测在任意数量的Hartree-Fock交换下单位过渡金属配合物(即Cr-Ni)的自旋态分裂,其精确度应为DFT的3 kcal mol -1 计算。我们的交换敏感性ANN通过从半局部DFT到混合DFT的外推,可以对各种实验表征的过渡金属配合物进行改进的预测。人工神经网络的性能也优于其他机器学习模型(即支持向量回归和核岭回归),证明了在可转移性方面的性能得到了特别提高,这是由各种测试集上的预测误差所衡量的。我们建立了新的不确定性量化工具的价值,以估计计算化学中的ANN预测不确定性,并且我们提供了其他启发式方法,用于识别何时可能无法由ANN准确预测目标化合物。在这项工作中开发的人工神经网络提供了一种筛选过渡金属配合物的策略,既可以直接进行人工神经网络预测,也可以通过改进的结构生成来通过第一原理模拟进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号