首页> 美国卫生研究院文献>Journal of Sports Science Medicine >Constraint-Led Changes in Internal Variability in Running
【2h】

Constraint-Led Changes in Internal Variability in Running

机译:运行中内部变量的约束性变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We investigated the effect of a one-time application of elastic constraints on movement-inherent variability during treadmill running. Eleven males ran two 35-min intervals while surface EMG was measured. In one of two 35-min intervals, after 10 min of running without tubes, elastic tubes (between hip and heels) were attached, followed by another 5 min of running without tubes. To assess variability, stride-to-stride iEMG variability was calculated. Significant increases in variability (36 % to 74 %) were observed during tube running, whereas running without tubes after the tube running block showed no significant differences. Results show that elastic tubes affect variability on a muscular level despite the constant environmental conditions and underline the nervous system's adaptability to cope with somehow unpredictable constraints since stride duration was unaltered.Key points class="unordered" style="list-style-type:disc">The elastic constraints led to an increase in iEMG variability but left stride duration variability unaltered.Runners adapted to the elastic cords, evident in an iEMG variability decrease over time towards normal running.Hardly any aftermaths were observed in the iEMG analyses when comparing normal running after the constrained running block to normal running. class="kwd-title">Key words: Electromyography, adaptation, performance class="head no_bottom_margin" id="sec1-1title">IntroductionVariability in human (motor) behavior and performance is still a two-sided affair. Although the advantage of variability has already been mentioned as early as in the 1960's by Russian pioneer Nikolai Bernstein, , variability in the domain of sports (especially during movement production) has only recently been considered as an essential requirement. Traditional approaches saw variability or inconsistency in movement as noise or a problem to be reduced with training and practice (Bartlett et al., ; Davids et al., ). That neglected, however, its important functional role in motor behavior (i.e. variability that is beneficial to outcome performance) (Hamill et al., ; Hatze, ).The development and successful integration of different perspectives (e.g. synergetics or dynamic system approaches, stochastic resonance, as well as natural and artificial neural networks) eventually contributed to a reconsideration of variability. The transfer of knowledge of, for example, information gained from networks within biological and computational science to sports highlights the importance of different experiential contents ensuring adaptation and flexibility (i. e. generalization) in task execution (Riley and Turvey, ; Schöllhorn et al., ). Research in other domains such as disease or aging (e.g. loss of variability in gait due to aging and Huntington's disease (Van Emmerik and Van Wegen, )) further supports the positive characteristics of movement-production variability as being not only non-interfering, but rather fundamental to achieving a consistent movement outcome (Heiderscheit et al., ; Schöllhorn et al., ).Given that most sport skills involve a large number of muscles and joints (i.e. many degrees of freedom), variability became an indicator reflecting readiness of these degrees of freedom to covary to achieve a required higher order macroscopic movement outcome (Handford et al., ). This dynamic variability is the consequence of variations from the underlying nonlinearities in the system and emerges due to shape new emergence of coordination and control (Davids et al., ; Hatze, ; Van Emmerik and Van Wegen, ). Due to this indeterminacy within sublevels in repetitive movements, the movement outcome as the result of a complex interplay of forces acting on the body (non-muscular forces or according to Bernstein, reactive phenomena) and those forces actively produced by the person itself (i.e. internal or produced muscle forces) will always inhere a certain level of variability (Hatze, ).In sports, analyses of even closed movements such as a free throw in basketball or treadmill running (e.g. Button et al., href="#ref8" rid="ref8" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887687">2003; Verkerke et al., href="#ref41" rid="ref41" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887694">1998; Wheat et al., href="#ref42" rid="ref42" class=" bibr popnode">2005) illustrate that top athletes do, in fact, show variability in their execution levels (e.g. release angle in basketball (Button et al., href="#ref8" rid="ref8" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887675">2003)). Despite this fact, they are still able to achieve the same movement outcome. This indicates that variability may be essential for producing skilled behavior (Bartlett et al., href="#ref2" rid="ref2" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887680">2007; Wilson et al., href="#ref44" rid="ref44" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887662">2007) and functionality for highly skilled athletes (pointing to an ability to co-vary) (Handford et al., href="#ref17" rid="ref17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887698">1997).For training and development, this would further implement that adding variability by engaging athletes in complex and time-varying situations and settings may be adaptively advantageous in situations of environmental unpredictability (Fontanini and Katz, href="#ref14" rid="ref14" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887705">2008). Several studies in various sports (e.g. volleyball (Spratte et al., href="#ref37" rid="ref37" class=" bibr popnode">2007), soccer (Trockel and Schöllhorn, href="#ref38" rid="ref38" class=" bibr popnode">2003), speed skating (Savelsbergh et al., href="#ref34" rid="ref34" class=" bibr popnode">2010), indoor hockey (Beckmann et al., href="#ref3" rid="ref3" class=" bibr popnode">2008; Birklbauer et al., href="#ref6" rid="ref6" class=" bibr popnode">2006) or athletics (Schöllhorn et al., href="#ref35" rid="ref35" class=" bibr popnode">2010)) support the positive effect of adding variability.However, if, on the one hand, variability, induced by the set constraints or different executions or tasks, is too broad, the exercises may no longer be supportive for the actual task (i.e. no transfer of the exercises to the actual movement is possible); on the other hand, if there is no variability, the athlete is tightly constrained and it may be difficult to find the individual optimum (Schöllhorn et al., href="#ref36" rid="ref36" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887672">2009). Hence, the magnitude of variability must be attuned to remain within a functional bandwidth of variability (Birklbauer et al., href="#ref6" rid="ref6" class=" bibr popnode">2006; Handford et al., href="#ref17" rid="ref17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887696">1997). Combining the aforementioned variability aspects, it is assumed that the induced variability (at least at a certain skill level) should remain within the movement skill or at least within its immediate vicinity, to maintain the basic structure of the movement pattern.Against this background, the application of elastic tubes to provide resistance to the lower extremities was assumed to meet the requirements to create variability within an optimal boundary. As the given elastic constraint (due to its property) may influence loading of lower extremities and the resulting alteration in the moment of inertia of the leg contribute to the movement outcome (Martin, href="#ref26" rid="ref26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887668">1985), the upcoming question is how elastic tubes influence a well-established behavior as for instance running.It is obvious that running with different tube positions increases variability during movement production and perhaps results in a variable movement outcome. That is because the permanently changing environmental constraints may require adaptation in muscle synergies to achieve the desired movement outcome and perform the requested movement pattern; however, it would be of interest to identify whether one single application can increase variability and if so, the extent to which it is increased and how performance can be adjusted to changes through this constraint.Up to now, the field of application of elastic tubes was resistance and conditioning training (e.g. athletics) (Corn and Knudson, href="#ref10" rid="ref10" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887658">2003) but not as a technique (and coordination) training device as is the case in this study. The tubes (attached between the hip and heel) influence the freedom of movement of the lower extremities and alter the forces and, thus, lead to variation within the reactive phenomena. The imposed perturbation would result in supportive and counterproductive forces and for that reason muscle activations change accordingly with respect to an optimal pattern of coordination and performance. Consequently, it has been assumed that such a “variability” constraint increases variability on a muscular level. Running was chosen to be the investigated task because it is a routine and one of the most common types of locomotion (Abe et al., href="#ref1" rid="ref1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887688">2007).Therefore, the aim of this study was to assess the acute effect of a one-time application of elastic constraints on variability of muscle activation variability during running. We wanted to determine whether it is possible to influence variability within the muscular components when running with elastic tubes. Specifically, it may be expected that there is a change and adaptation in variability over time during running with elastic tubes. Since participants were novices with the tubes, we expected to see an increase in muscle variability through the application of elastic tubes (and their sensitivity of initial condition) and also an after-effect, when switching back to running without tubes.
机译:我们研究了在跑步机运行过程中一次性应用弹性约束对运动固有可变性的影响。 11名男性跑了两次35分钟的间隔,同时测量了表面肌电图。每35分钟间隔两次,在无管跑步10分钟后,连接弹性管(髋部和脚跟之间),然后再无管跑步5分钟。为了评估变异性,计算了跨步iEMG变异性。在试管运行期间,观察到了变异性的显着增加(36%至74%),而在试管运行块之后无试管运行则无显着差异。结果表明,尽管环境条件不断变化,弹性管仍会影响肌肉水平的变异性,并突显了神经系统的适应能力,因为步幅持续时间没有改变,因此可以应付某种不可预知的约束。要点 class =“ unordered” style =“ list-style- type:disc“> <!-list-behavior =无序前缀-word = mark-type = disc max-label-size = 0-> 弹性约束导致iEMG变异性增加,但步幅持续时间较长 跑步者适应了弹性绳,在iEMG方面,随着时间的流逝,朝着正常跑步的趋势明显降低。 在iEMG分析中,几乎没有观察到任何后遗症。 class =“ kwd-title”>关键字:电泳,适应性,性能 class =“ head no_bottom_margin” id =“ sec1 -1title“>简介人类(运动)行为和表现的变化仍然是两方面的事情。尽管可变性的优点早在1960年代就已经被俄罗斯先驱尼古拉·伯恩斯坦(Nikolai Bernstein)提及,但直到最近才将运动领域的可变性(特别是在运动生产过程中)视为基本要求。传统方法将运动的可变性或不一致性视为噪音,或者通过训练和练习可以减少的问题(Bartlett等人; Davids等人)。然而,这忽略了它在运动行为中的重要功能作用(即对结局表现有利的可变性)(Hamill等人;; Hatze等人)。不同观点的发展和成功整合(例如协同或动态系统方法,随机的)共振以及自然和人工神经网络)最终促成了对可变性的重新考虑。例如,从生物学和计算机科学网络中获得的信息到运动的知识转移,凸显了确保体验适应性和灵活性(即泛化)在任务执行中的不同体验内容的重要性(Riley和Turvey,;Schöllhorn等,) 。在疾病或衰老等其他领域的研究(例如,由于衰老和亨廷顿舞蹈症而导致步态的丧失(Van Emmerik和Van Wegen,))进一步支持了运动生产变异性的积极特征,因为它不仅是非干扰性的,而且是干扰性的。考虑到大多数运动技能涉及大量的肌肉和关节(即许多自由度),因此可变性成为反映准备运动的指标(Heiderscheit等,Schöllhorn等)。这些自由度可以达到要求的更高阶的宏观运动结果(Handford等人)。这种动态可变性是系统中基本非线性变化的结果,并且由于新出现的协调和控制而出现(Davids等,Hatze,Van Emmerik和Van Wegen,)。由于重复运动在子级中的不确定性,运动结果是作用在身体上的力(非肌肉力或根据伯恩斯坦的反应性现象)和人自身主动产生的力(例如,内部或产生的肌肉力量)始终会保持一定程度的可变性(Hatze,)。在运动中,即使是封闭运动的分析,例如篮球或跑步机上的罚球(例如Button等,href =“# ref8“ rid =” ref8“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_327887687“> 2003 ; Verkerke等人,href =”#ref41“ rid =” ref41“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_327887694“> 1998 ; Wheat等人,href="#ref42" rid="ref42" class=" bibr popnode"> 2005 )说明了顶尖运动员确实显示了其执行水平的可变性(例如,篮球的释放角度(Button等,href =“#ref8” rid =“ ref8” class =“ bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_327887675“> 2003 )。尽管如此,他们仍然能够达到相同的运动结果。这表明可变性对于产生熟练的行为可能是必不可少的(Bartlett et al。,href="#ref2" rid="ref2" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887680"> 2007 ; Wilson等人,href="#ref44" rid="ref44" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887662"> 2007 )和高技能运动员的功能(指出了共同)(Handford等人,href="#ref17" rid="ref17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887698"> 1997 )。对于培训和发展,将进一步实现,通过在复杂且时变的情况和环境中让运动员参与来增加可变性在环境不可预测的情况下可能具有适应性优势(Fontanini和Katz,href =“#ref14” rid =“ ref14” class =“ bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_327887705“> 2008 )。对各种运动的一些研究(例如排球(Spratte等人,href="#ref37" rid="ref37" class=" bibr popnode"> 2007 ),足球(Trockel和Schöllhorn,href =“#ref38” rid =“ ref38” class =“ bibr popnode”> 2003 ),速度滑冰(Savelsbergh等人,href =“#ref34” rid =“ ref34” class =“ bibr popnode “> 2010 ),室内曲棍球(Beckmann等人,href="#ref3" rid="ref3" class=" bibr popnode"> 2008 ; Birklbauer等人,href =“#ref6” rid =“ ref6” class =“ bibr popnode”> 2006 )或田径运动(Schöllhorn等人,href =“#ref35” rid =“ ref35” class =“ bibr popnode “> 2010 ))支持增加可变性的积极效果。但是,如果一方面,由于设定的约束或不同的执行或任务而引起的可变性太大,则练习可能不再是支持性的用于实际任务(即不可能将练习转移到实际运动中);另一方面,如果没有可变性,则运动员会受到严格限制,可能很难找到个人最优值(Schöllhorn等人,href =“#ref36” rid =“ ref36” class =“ bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_327887672“> 2009 )。因此,必须对可变性的大小进行调整,以使其保持在可变性的功能带宽之内(Birklbauer等人,href="#ref6" rid="ref6" class=" bibr popnode"> 2006 ; Handford等,href="#ref17" rid="ref17" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887696"> 1997 )。结合上述可变性方面,我们假设所诱发的可变性(至少在某种技能水平上)应保留在运动技能内或至少在其直接附近以维持运动模式的基本结构。假定使用弹性管为下肢提供抵抗力可以满足在最佳边界内产生可变性的要求。由于给定的弹性约束(由于其属性)可能会影响下肢的负荷,因此腿部惯性矩的变化会影响运动结果(马丁,href =“#ref26” rid =“ ref26” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_327887668”> 1985 ),接下来出现的问题是,弹性管如何影响良好的行为,例如运行。显然,在不同的管位置运行会增加可变性在运动产生期间,可能导致运动结果可变。这是因为永久改变的环境约束可能需要适应肌肉的协同作用,以实现所需的运动结果并执行所需的运动模式;但是,确定一个单一的应用程序是否可以增加可变性将是令人感兴趣的,如果可以,确定可变性的增加程度以及如何通过此约束来调整性能以进行更改。到目前为止,弹性管的应用领域是阻力训练和条件训练(例如运动)(Corn和Knudson,href="#ref10" rid="ref10" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_327887658"> 2003 ),但不是一种技术(和协调)训练设备,如本研究中的情况。管(连接在臀部和脚跟之间)影响下肢的运动自由度并改变力,从而导致反应现象内的变化。施加的干扰会导致支持力和反作用力,因此,就最佳的协调和表现方式而言,肌肉的激活会相应地发生变化。因此,已经假设这种“可变性”约束增加了肌肉水平的可变性。之所以选择“跑步”作为调查对象,是因为它是一种日常活动,也是最常见的运动类型之一(Abe等人,href =“#ref1” rid =“ ref1” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_327887688”> 2007 )。因此,这项研究的目的是评估一次性应用弹性约束对跑步过程中肌肉激活变异性的急性影响。我们想确定在用弹性管跑步时是否有可能影响肌肉组件内的变异性。特别地,可以预期在使用弹性管运行期间随时间变化和适应性变化。由于参与者是使用管子的新手,因此当切换回无管运行时,我们期望通过使用弹性管(及其对初始状态的敏感性)增加肌肉变异性,并产生后效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号