【2h】

Guidance Molecules in Axon Regeneration

机译:轴突再生中的指导分子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
机译:受伤的成年哺乳动物中枢神经系统(CNS)组织的再生能力非常有限。引起神经网络破坏或损害的疾病或伤害通常会导致永久性神经功能缺损。例如,脊髓损伤会中断脊柱突出神经元的重要的上升和下降纤维束。由于位于损伤部位近端或远端的神经元结构基本上保持完好无损,因此脊髓损伤研究的主要目标是制定策略来重建由于损伤而失去的神经支配。受伤的成人中枢神经系统组织的生长抑制性质是再生轴突生长和发芽的主要障碍。人们认识到分子参与者的复杂性在增加。 CNS抑制剂分为三大类:规范的轴突引导分子(例如信号量,ephrins,netrins),原型髓磷脂抑制剂(Nogo,MAG和OMgp)和硫酸软骨素蛋白聚糖(lecticans,NG2)。光谱的另一端是促进神经元生长和发芽的分子。这些包括促进生长的细胞外基质分子,细胞粘附分子和神经营养因子。除了环境(外部)生长调节信号外,还存在细胞内在调节机制,该机制极大地影响了损伤诱导的神经元生长。通过降低外在抑制线索,增加外在生长促进线索或通过激活细胞内在生长程序,已经实现了受损CNS神经元的不同程度的生长和萌芽。最近,激活生长促进程序并同时减弱生长抑制途径的组合疗法取得了一些成功。在脊髓损伤(SCI)的实验动物模型中,单药和联合疗法已显示出促进神经元生长和发芽的作用。解剖生长通常与改善行为结果相关。未来的挑战包括测试动物模型中一些最有前途的治疗策略是否也对患有SCI的人类患者有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号