首页> 美国卫生研究院文献>Current Genomics >Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function
【2h】

Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function

机译:遗传学和表观遗传学:线粒体功能的调节中的作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the “metabolic stage”. This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
机译:能量代谢和线粒体功能在细胞稳态中处于核心地位。氧化代谢受多种水平调节,范围从基因转录到变构调节。为了完成对这些多个调节回路的微调,对核和线粒体区室进行了严格和相互控制。核编码因子PPARγ共激活因子1α和线粒体转录因子A在氧化代谢和线粒体生物发生的调节中起关键作用这一事实是这种串扰的典范。在这里,我们提供了涉及能量代谢和线粒体功能控制的遗传和表观遗传机制的最新调查。染色质动力学高度依赖于在组蛋白中特定氨基酸处发生的翻译后修饰以及与核DNA相关的其他因素。除了负责组蛋白甲基化/去甲基化和乙酰化/去乙酰化的酶的特征明确之外,其他因素也进入了“代谢阶段”。新一类的α-酮戊二酸调节的脱甲基酶(含有脱甲基酶的Jumonji C结构域)和NAD +依赖性脱乙酰基酶(也称为sirtuins)就是这种情况。此外,最近出现了涉及线粒体DNA(mtDNA)复制和转录,线粒体RNA加工和成熟的机制的意外特征。这些机械的任何组件的突变或缺陷都会深刻影响线粒体的活性和氧化代谢。最后,最近的证据支持mtDNA包装在复制和转录中的重要性。这些发现以及对mtDNA中存在的非经典CpG岛进行甲基化的发现,表明表观遗传学在线粒体基因组功能的调节中也起作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号