首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Simulation of the Planetary Interior Differentiation Processes in the Laboratory
【2h】

Simulation of the Planetary Interior Differentiation Processes in the Laboratory

机译:实验室内部行星内部分化过程的模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
机译:行星内部处于高压和高温条件下,并且具有分层结构。有两个重要的过程导致了这种层状结构:(1)行星分化使液态金属在固态硅酸盐基质中渗透,以及(2)随后的行星冷却使内芯结晶。我们进行高压和高温实验以模拟实验室中的两个过程。渗流行星芯的形成取决于熔体渗流的效率,该效率由二面角(润湿)角控制。渗流模拟包括在高压下将样品加热到目标温度,在该温度下铁硫合金熔融而硅酸盐保持固体,然后确定真实的二面角,以通过3D可视化评估结晶基质中液体的迁移方式。通过用聚焦离子束(FIB)切片回收的样品并使用FIB / SEM横梁仪器拍摄每个切片的SEM图像,可以实现3D体积渲染。第二组实验旨在通过确定熔融温度和高压下的元素分配来了解内芯结晶和液态外芯与固态内芯之间的元素分布。熔化实验在高达27 GPa的多砧装置中进行,并通过激光加热将其扩展到金刚石砧室中的更高压力。我们已经开发了通过精密FIB铣削回收少量加热样品的技术,并获得了激光加热点的高分辨率图像,这些图像在高压下显示出熔化的质地。通过分析液相和固相共存的化学成分,我们可以精确地确定液相线,并提供必要的数据以了解内核结晶过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号