首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures
【2h】

Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures

机译:超低温下的角度分辨光发射光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (>k) and the probability to find them in a particular state with given ω and >k is described by the spectral function A(>k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate >k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample.In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.
机译:材料的物理特性由其电子结构定义。固体中的电子以能量(ω)和动量(> k )为特征,并且通过给定的ω和> k 在特定状态下找到它们的概率由光谱函数描述A(> k ,ω)。可以在基于众所周知的光电效应的实验中直接测量该功能,以解释哪个爱因斯坦早在1921年就获得了诺贝尔奖。在光电效应中,表面发光的光从材料中发射出电子。根据爱因斯坦的观点,能量守恒可以确定样品内部电子的能量,前提是已知光光子的能量和输出光电子的动能。动量守恒还可以通过测量光电子离开表面的角度来估计> k 与光电子的动量相关。该技术的现代版本称为角度分辨光发射光谱法(ARPES),它利用两种守恒定律来确定电子结构,即固体内部电子的能量和动量。为了解决对于理解凝聚态物理问题至关重要的细节,需要将三个数量减到最少:光子能量的不确定性*,光电子动能的不确定性和样品的温度。在我们的方法中,我们结合了三个最新成果在同步辐射,表面科学和低温领域。我们使用具有可调节光子能量的同步加速器辐射,其不确定性为1 meV,电子能量分析仪可检测动能,精度为1 meV,He 3 低温恒温器可实现我们将样品温度保持在1 K以下。我们讨论了在Sr2RuO4单晶和其他一些材料上获得的示例性结果。可以以前所未有的清晰度确定这种材料的电子结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号