首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
【2h】

Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction

机译:HIV-1衣壳组装体的结构通过低温电子显微镜和螺旋式螺旋实空间重构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy1 and two-dimensional (2D) electron crystallography2 have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method3, which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments4, microtubules5, amyloid fibers6, tobacco mosaic viruses7, and bacteria flagella8, and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable.In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid9 is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly.
机译:低温电子显微镜(cryo-EM)与图像处理相结合,是确定大分子蛋白质复合物和装配体结构的日益强大的工具。实际上,单粒子电子显微镜 1 和二维(2D)电子晶体学 2 已经成为相对常规的方法,并且使用这些方法已经解决了许多结构。同时,螺旋物体的图像处理和三维(3D)重建得到了快速发展,特别是使用单个粒子分析工具的迭代螺旋实空间重建(IHRSR)方法 3 结合螺旋对称性。许多生物实体以丝状或螺旋形式起作用,包括肌动蛋白丝 4 ,微管 5 ,淀粉样纤维 6 ,烟草花叶病毒 7 和细菌鞭毛 8 ,并且与非3D重建所需的许多图像相比,由于可以从单个投影图像获得螺旋实体的3D密度图。通过IHRSR方法,可以对这种灵活且无序的螺旋装配体进行结构分析。在此视频文章中,我们提供了详细的协议以获取螺旋蛋白装配体的3D密度图(HIV-1 capsid 9 是我们的示例),包括用于冷冻EM样品制备的协议,通过冷冻EM收集低剂量数据,对螺旋衍射图进行索引以及使用IHRSR进行图像处理和3D重建的协议。与其他技术相比,cryo-EM在接近自然条件下可提供最佳的样品保存。通过快速冷冻将样品包埋在一层薄薄的玻璃冰中,并在液氮温度下,低剂量条件下在电子显微镜中成像,以最大程度地减少辐射损伤。样品图像是在接近自然条件下获得的,但以记录的显微照片中的低信号和低对比度为代价。幸运的是,除了索引螺旋衍射图谱外,螺旋重建的过程已基本实现自动化。在这里,我们描述了一种索引螺旋结构并从数字化显微照片确定螺旋对称性(螺旋参数)的方法,这是3D螺旋重建的必要步骤。简而言之,我们通过应用IHRSR方法获得了初始3D密度图。然后,通过为每个段的对齐参数引入约束条件来迭代地完善此初始图,从而控制其自由度。通过校正电子显微镜的对比度传递函数(CTF)(幅度和相位校正)并优化组件的螺旋对称性,可以实现进一步的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号