首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test
【2h】

Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test

机译:在定时测试中测量子任务性能的可穿戴传感器系统的收敛有效性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the minimal detectable change of these measurements. Methods: Eleven adults performed the TUG three times each under normal and slow walking conditions, and 3 m and 5 m walking distances, in a 12-camera motion analysis laboratory. An inertial measurement unit (IMU) with tri-axial accelerometers and gyroscopes was worn on the upper-torso. Motion analysis marker data and IMU signals were analyzed separately to identify the six main TUG phases: sit-to-stand, 1st walk, 1st turn, 2nd walk, 2nd turn, and stand-to-sit, and the absolute agreement between two systems analyzed using intra-class correlation (ICC, model 2) analysis. The minimal detectable change (MDC) within subjects was also calculated for each TUG phase. Results: The overall difference between TUG sub-tasks determined using 3D motion capture data and the IMU sensor data was <0.5 s. For all TUG distances and speeds, the absolute agreement was high for total TUG time and walk times (ICC > 0.90), but less for chair activity (ICC range 0.5–0.9) and typically poor for the turn time (ICC < 0.4). MDC values for total TUG time ranged between 2–4 s or 12–22% of the TUG time measurement. MDC of the sub-task times were higher proportionally, being 20–60% of the sub-task duration. Conclusions: We conclude that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.
机译:背景:定时测试(TUG)是临床实践和研究成果中最常用的身体机能测试之一。惯性传感器已用于将TUG测试解析为复合阶段(上升,行走,转弯等),但尚未针对光电金标准验证此方法,据我们所知,尚无研究发表最小的可检测变化这些测量。方法:11名成年人在12台摄像机的运动分析实验室中,在正常和缓慢的步行条件下分别进行了3次TUG训练,步行距离分别为3 m和5 m。上躯干上装有带三轴加速度计和陀螺仪的惯性测量单元(IMU)。分别分析了运动分析标记数据和IMU信号,以识别六个主要的TUG阶段:从坐到站,第一步行,第一弯,第二步行,第二弯和站立到坐,以及两个系统之间的绝对一致性使用类内相关(ICC,模型2)分析进行分析。还针对每个TUG阶段计算了受试者体内的最小可检测变化(MDC)。结果:使用3D运动捕捉数据和IMU传感器数据确定的TUG子任务之间的总体差异为<0.5 s。对于所有TUG距离和速度,总的TUG时间和步行时间的绝对一致性很高(ICC> 0.90),但椅子活动的绝对一致性较低(ICC范围0.5–0.9),转弯时间通常很差(ICC <0.4)。总TUG时间的MDC值介于TUG时间测量值的2–4 s或12–22%之间。子任务时间的MDC成比例增加,为子任务持续时间的20–60%。结论:我们得出结论,商业IMU可用于量化TUG阶段,其准确度足以用于临床应用。但是,使用惯性传感器时的MDC不一定比不那么复杂的测量工具有所改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号