首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network
【2h】

Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

机译:基于人工神经网络的低强度超声热声传感器设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor’s average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively.
机译:在治疗性超声应用中,准确的超声输出强度至关重要,因为治疗性超声的生理效应对这些应用的强度和持续时间非常敏感。尽管辐射力平衡是用于测量超声强度和功率的基准技术,但它昂贵,操作困难并且受到噪声振动的损害。为了克服这些局限性,需要开发低成本,易于操作且抗振动的替代设备来进行快速的超声强度测量。因此,我们提出并验证了一种使用人工神经网络技术的新型两层热声传感器,该传感器可准确测量30至120 mW / cm 2 之间的低超声强度。传感器设计的第一层是由有机玻璃制成的圆柱状吸收体,第二层是由具有高衰减系数的聚氨酯橡胶组成的第二层,以吸收额外的超声能量。传感器根据由入射声能转换而来的热量引起的温度升高确定超声强度。与我们以前的单层传感器设计相比,新的两层传感器提高了超声吸收效率,可提供更快,更可靠的测量。通过在K波工具箱中使用三维模型,我们对超声传播过程的仿真表明,两层设计比单层设计更有效。我们还集成了人工神经网络算法来补偿较大的测量偏移。通过校准获得传感器特性的多个参数后,将构建人工神经网络来校正温度漂移,并通过约10秒钟的迭代训练来提高我们的热声测量的可靠性。通过一系列实验验证了人工神经网络方法的性能。与我们以前的设计相比,新设计将感应时间从20 s减少到12 s,并将传感器的平均误差从3.97 mW / cm 2 降低到1.31 mW / cm 2 分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号