首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Bacteria Inside Semiconductors as Potential Sensor Elements: Biochip Progress
【2h】

Bacteria Inside Semiconductors as Potential Sensor Elements: Biochip Progress

机译:半导体内部细菌作为潜在传感器元件:生物芯片进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It was discovered at the beginning of this Century that living bacteria—and specifically the extremophile Pseudomonas syzgii—could be captured inside growing crystals of pure water-corroding semiconductors—specifically germanium—and thereby initiated pursuit of truly functional “biochip-based” biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.
机译:在本世纪初,人们发现活细菌,尤其是极端嗜热假单胞菌(Pseudomonas syzgii),可以被捕获在纯水腐蚀的半导体晶体(尤其是锗)的生长晶体中,从而开始追求功能真正的“基于生物芯片”的生物传感器。这种观察首先是在超纯水流动的半导体制造设施(fabs)的内部紫外线照射壁上进行的,此后,这种观察还不能完全完美地复制到用于芯片制造的更简单的流通池系统中,如此处所述。认识到这些加合物作为光学开关或代谢事件探针的潜在重要性,现针对未来的研究需求,审查和讨论了晶圆及其组成成分对目前确定的晶体成核和生长现象的影响。例如,通过集成的嵌入式单元可以更容易地将当前光子电路的光束调制为半导体上的电信号。这项研究是对最近出版的陶瓷科学大挑战的回应,该挑战设计和合成了可以通过生物刺激进行调节的氧化物电子,表面,界面和纳米级结构,以揭示传统半导体电子无法实现的现象。这篇简短的评论仅论述了这些潜在生物芯片首次生产时的制造设施的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号