首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >A Multi-compartment CNS Neuron-glia Co-culture Microfluidic Platform
【2h】

A Multi-compartment CNS Neuron-glia Co-culture Microfluidic Platform

机译:多室中枢神经系统神经胶质细胞共培养微流控平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a novel multi-compartment neuron co-culture microsystem platform for in vitro CNS axon-glia interaction research, capable of conducting up to six independent experiments in parallel for higher-throughput. We developed a new fabrication method to create microfluidic devices having both micro and macro scale structures within the same device through a single soft-lithography process, enabling mass fabrication with good repeatability.The multi-compartment microfluidic co-culture platform is composed of one soma compartment for neurons and six axon/glia compartments for oligodendrocytes (OLs). The soma compartment and axon/glia compartments are connected by arrays of axon-guiding microchannels that function as physical barriers to confine neuronal soma in the soma compartment, while allowing axons to grow into axon/glia compartments. OLs loaded into axon/glia compartments can interact only with axons but not with neuronal soma or dendrites, enabling localized axon-glia interaction studies. The microchannels also enabled fluidic isolation between compartments, allowing six independent experiments to be conducted on a single device for higher throughput.Soft-lithography using poly(dimethylsiloxane) (PDMS) is a commonly used technique in biomedical microdevices. Reservoirs on these devices are commonly defined by manual punching. Although simple, poor alignment and time consuming nature of the process makes this process not suitable when large numbers of reservoirs have to be repeatedly created. The newly developed method did not require manual punching of reservoirs, overcoming such limitations. First, seven reservoirs (depth: 3.5 mm) were made on a poly(methyl methacrylate) (PMMA) block using a micro-milling machine. Then, arrays of ridge microstructures, fabricated on a glass substrate, were hot-embossed against the PMMA block to define microchannels that connect the soma and axon/glia compartments. This process resulted in macro-scale reservoirs (3.5 mm) and micro-scale channels (2.5 μm) to coincide within a single PMMA master. A PDMS replica that served as a mold master was obtained using soft-lithography and the final PDMS device was replicated from this master.Primary neurons from E16-18 rats were loaded to the soma compartment and cultured for two weeks. After one week of cell culture, axons crossed microchannels and formed axonal only network layer inside axon/glia compartments. Axons grew uniformly throughout six axon/glia compartments and OLs from P1-2 rats were added to axon/glia compartments at 14 days in vitro for co-culture.
机译:我们为体外中枢神经系统轴突-胶质细胞相互作用研究提供了一种新型的多隔室神经元共培养微系统平台,能够并行进行多达六个独立实验以实现更高的通量。我们开发了一种新的制造方法,可通过一次软光刻工艺在同一设备内创建同时具有微观和宏观结构的微流体设备,从而能够进行批量制造并具有良好的可重复性。多隔室微流体共培养平台由一个体组成用于神经元的隔室和用于少突胶质细胞(OL)的六个轴突/神经胶质隔室。体细胞室和轴突/神经胶质细胞室通过一系列轴突导向微通道连接,这些微通道起物理屏障的作用,将神经元的体细胞限制在体细胞室中,同时允许轴突生长成轴突/神经胶质细胞室。装在轴突/神经胶质区室中的OLs只能与轴突相互作用,而不能与神经元的体细胞或树突相互作用,从而可以进行局部的轴突-神经胶质相互作用研究。这些微通道还实现了隔室之间的流体隔离,从而允许在单个设备上进行六个独立的实验以实现更高的通量。使用聚二甲基硅氧烷(PDMS)的软光刻技术是生物医学微型设备中常用的技术。这些设备上的储层通常通过手动打孔来定义。尽管该过程简单,对准和耗时性差,但在必须重复创建大量储层时,该过程并不适用。新开发的方法不需要手动冲孔储层,克服了这些限制。首先,使用微型铣床在聚甲基丙烯酸甲酯(PMMA)块上制成七个储层(深度:3.5毫米)。然后,将在玻璃基板上制造的脊微结构阵列热压在PMMA块上,以定义连接体细胞和轴突/神经胶质隔室的微通道。此过程导致在单个PMMA母版中重合的大型储层(3.5 mm)和微型通道(2.5μm)。使用软光刻法获得充当模具母版的PDMS复制品,并从该母版复制最终的PDMS装置。将E16-18大鼠的原代神经元加载到体腔中并培养两周。细胞培养一周后,轴突穿过微通道并在轴突/神经胶质隔室内形成仅轴突的网络层。轴突在整个六个轴突/神经胶质区室中均一生长,并将来自P1-2大鼠的OLs在体外第14天添加到轴突/神经胶质区室中进行共培养。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号