首页> 美国卫生研究院文献>Redox Biology >Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway
【2h】

Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway

机译:缓解线粒体功能障碍可通过共激活NRF2和PINK1信号通路恢复碳离子诱导的认知功能障碍

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET) carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive impairments in a mouse model of high-LET carbon ion irradiation.
机译:碳离子疗法是放射疗法治疗肿瘤的一种有前途的方法,但是,仍需研究和保护诱发晚期正常组织损伤的潜在风险。本研究的目的是通过靶向海马在小鼠中的高线性能量转移(high-LET)碳离子激发长期的认知缺陷,海马在记忆和学习中起着至关重要的作用。我们的数据显示,暴露于4 Gy的碳离子一个月后,碳离子辐照明显导致认知能力受损,神经退行性变和神经元细胞死亡,以及线粒体完整性降低,三羧酸循环通量和电子运输活动中断链,以及抗氧化防御系统的低下,从而导致海马区ATP产量下降和持续的氧化损伤。从机制上讲,我们证明了线粒体稳态和氧化还原平衡的破坏,通常以线粒体动力学,线粒体和谷胱甘肽氧化还原对紊乱为特征,这与抑制PINK1和NRF2信号通路密切相关,后者是分子反应中关键调节因子神经毒性和神经退行性疾病。最重要的是,我们发现以褪黑激素作为靶向线粒体的抗氧化剂给药可促进PINK1在线粒体膜上的积累,并增加NRF2的积累和转运。此外,褪黑激素显着​​增强了NRF2和PINK1之间的分子相互作用。此外,在小鼠海马神经元细胞中,NRF2 / PINK1的过表达显着保护了海马神经元免受碳离子引起的毒性损害。因此,这些数据表明通过共调节NRF2和PINK1减轻持续的线粒体功能障碍和氧化应激可能负责恢复高LET碳离子辐射小鼠模型的认知功能障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号