【2h】

Interfacial fluid transport is a key to hydrogel bioadhesion

机译:界面流体传输是水凝胶生物粘附的关键

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attaching hydrogels to soft internal tissues is a key to the development of a number of biomedical devices. Nevertheless, the wet nature of hydrogels and tissues renders this adhesion most difficult to achieve and control. Here, we show that the transport of fluids across hydrogel−tissue interfaces plays a central role in adhesion. Using ex vivo peeling experiments on porcine liver, we characterized the adhesion between model hydrogel membranes and the liver capsule and parenchyma. By varying the contact time, the tissue hydration, and the swelling ratio of the hydrogel membrane, a transition between two peeling regimes is found: a lubricated regime where a liquid layer wets the interface, yielding low adhesion energies (0.1 J/m2 to 1 J/m2), and an adhesive regime with a solid binding between hydrogel and tissues and higher adhesion energies (1 J/m2 to 10 J/m2). We show that this transition corresponds to a draining of the interface inducing a local dehydration of the tissues, which become intrinsically adhesive. A simple model taking into account the microanatomy of tissues captures the transition for both the liver capsule and parenchyma. In vivo experiments demonstrate that this effect still holds on actively hydrated tissues like the liver capsule and show that adhesion can be strongly enhanced when using superabsorbent hydrogel meshes. These results shed light on the design of predictive bioadhesion tests as well as on the development of improved bioadhesive strategies exploiting interfacial fluid transport.
机译:将水凝胶附着到软的内部组织上是许多生物医学设备发展的关键。然而,水凝胶和组织的湿性质使这种粘附最难以实现和控制。在这里,我们证明了流体在水凝胶组织界面上的传输在粘附中起着核心作用。使用在猪肝上的离体去皮实验,我们表征了模型水凝胶膜与肝囊和实质之间的粘附。通过改变接触时间,组织水化和水凝胶膜的溶胀率,发现了两种剥离方式之间的过渡:一种润滑方式,其中液体层润湿了界面,产生了低的粘附能(0.1 J / m 2 至1 J / m 2 ),并且在水凝胶与组织之间具有牢固的结合力和更高的粘附能(1 J / m 2 )至10 J / m 2 )。我们表明,这种转变对应于界面的引流,从而引起组织的局部脱水,从而固有地成为粘着剂。考虑到组织的微观解剖结构的简单模型可以捕获肝囊和薄壁组织的转变。体内实验表明,这种作用仍然在诸如肝囊等活跃水合的组织上保持,并表明当使用超吸收性水凝胶网片时,粘附力可以大大增强。这些结果为预测性生物粘附力测试的设计以及开发利用界面流体运输的改进的生物粘附力策略提供了启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号