首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway
【2h】

Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway

机译:通过古代代谢途径中依赖氢酶的化学渗透机制进行能量守恒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ancient reductive acetyl-CoA pathway is employed by acetogenic bacteria to form acetate from inorganic energy sources. Since the central pathway does not gain net ATP by substrate-level phosphorylation, chemolithoautotrophic growth relies on the additional formation of ATP via a chemiosmotic mechanism. Genome analyses indicated that some acetogens only have an energy-converting, ion-translocating hydrogenase (Ech) as a potential respiratory enzyme. Although the Ech-encoding genes are widely distributed in nature, the proposed function of Ech as an ion-translocating chemiosmotic coupling site has neither been demonstrated in bacteria nor has it been demonstrated that it can be the only energetic coupling sites in microorganisms that depend on a chemiosmotic mechanism for energy conservation. Here, we show that the Ech complex of the thermophilic acetogenic bacterium Thermoanaerobacter kivui is indeed a respiratory enzyme. Experiments with resting cells prepared from T. kivui cultures grown on carbon monoxide (CO) revealed CO oxidation coupled to H2 formation and the generation of a transmembrane electrochemical ion gradient (Δµion). Inverted membrane vesicles (IMVs) prepared from CO-grown cells also produced H2 and ATP from CO (via a loosely attached CO dehydrogenase) or a chemical reductant. Finally, we show that Ech activity led to the translocation of both H+ and Na+ across the membrane of the IMVs. The H+ gradient was then used by the ATP synthase for energy conservation. These data demonstrate that the energy-converting hydrogenase in concert with an ATP synthase may be the simplest form of respiration; it combines carbon dioxide fixation with the synthesis of ATP in an ancient pathway.
机译:产乙酸细菌利用古老的还原性乙酰辅酶A途径从无机能源中形成乙酸盐。由于中枢途径不能通过底物水平的磷酸化获得净ATP,因此化石自养菌的生长依赖于通过化学渗透机制形成的ATP。基因组分析表明,某些产乙酸素仅具有能量转换,离子易位的氢化酶(Ech)作为潜在的呼吸酶。尽管Ech编码基因在自然界中分布广泛,但Ech作为离子转运化学渗透耦合位点的拟议功能在细菌中既未得到证实,也未证明其可能是依赖于Ech的微生物中唯一的能量耦合位点。节能的化学渗透机制。在这里,我们显示了嗜热产乙酸细菌热厌氧杆菌的Ech复合物确实是一种呼吸酶。用在一氧化碳(CO)上生长的基伍木衣藻培养物制备的静止细胞进行的实验表明,CO氧化与H2的形成和跨膜电化学离子梯度的产生有关( Δ µ i )。由CO生长的细胞制备的倒膜囊泡(IMV)也从CO(通过松散连接的CO脱氢酶)或化学还原剂产生H2和ATP。最后,我们表明Ech活性导致H + 和Na + 跨IMV的膜易位。然后,ATP合酶将H + 梯度用于能量守恒。这些数据表明,与ATP合酶协同作用的能量转换加氢酶可能是最简单的呼吸形式。它在古老的途径中将二氧化碳固定与ATP的合成结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号