首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Voltage-induced long-range coherent electron transfer through organic molecules
【2h】

Voltage-induced long-range coherent electron transfer through organic molecules

机译:电压诱导的通过有机分子的长距离相干电子转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological structures rely on kinetically tuned charge transfer reactions for energy conversion, biocatalysis, and signaling as well as for oxidative damage repair. Unlike man-made electrical circuitry, which uses metals and semiconductors to direct current flow, charge transfer in living systems proceeds via biomolecules that are nominally insulating. Long-distance charge transport, which is observed routinely in nucleic acids, peptides, and proteins, is believed to arise from a sequence of thermally activated hopping steps. However, a growing number of experiments find limited temperature dependence for electron transfer over tens of nanometers. To account for these observations, we propose a temperature-independent mechanism based on the electric potential difference that builds up along the molecule as a precursor of electron transfer. Specifically, the voltage changes the nature of the electronic states away from being sharply localized so that efficient resonant tunneling across long distances becomes possible without thermal assistance. This mechanism is general and is expected to be operative in molecules where the electronic states densely fill a wide energy window (on the scale of electronvolts) above or below the gap between the highest-occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). We show that this effect can explain the temperature-independent charge transport through DNA and the strongly voltage-dependent currents that are measured through organic semiconductors and peptides.
机译:生物结构依靠动力学调谐的电荷转移反应进行能量转换,生物催化和信号传导,以及氧化损伤修复。不同于使用金属和半导体来引导电流流动的人造电路,生物系统中的电荷转移是通过名义上绝缘的生物分子进行的。在核酸,肽和蛋白质中常规观察到的长距离电荷传输被认为是由一系列热激活的跳跃步骤引起的。然而,越来越多的实验发现电子转移在数十纳米范围内的温度依赖性有限。为了解释这些现象,我们基于电势差提出了一种与温度无关的机制,该电势差沿着分子作为电子转移的前驱物累积。具体地说,电压改变了电子状态的性质,使其不被急剧地局域化,因此在没有热辅助的情况下,可以实现长距离的有效共振隧穿。这种机制是普遍的,并且有望在分子中电子态密集地填充在最高占据的分子轨道(HOMO)和最低未被占据的分子轨道之间的间隙之上或之下的宽能量窗(以电子伏特的大小)的分子中(LUMO)。我们表明,这种效应可以解释通过DNA的温度无关电荷传输以及通过有机半导体和肽测量的强烈电压依赖性电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号