首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: A diecast mineralization process forms the tough mantis shrimp dactyl club
【2h】

PNAS Plus: A diecast mineralization process forms the tough mantis shrimp dactyl club

机译:PNAS Plus:压铸矿化过程形成了坚固的螳螂虾根茎

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomineralization, the process by which mineralized tissues grow and harden via biogenic mineral deposition, is a relatively lengthy process in many mineral-producing organisms, resulting in challenges to study the growth and biomineralization of complex hard mineralized tissues. Arthropods are ideal model organisms to study biomineralization because they regularly molt their exoskeletons and grow new ones in a relatively fast timescale, providing opportunities to track mineralization of entire tissues. Here, we monitored the biomineralization of the mantis shrimp dactyl club—a model bioapatite-based mineralized structure with exceptional mechanical properties—immediately after ecdysis until the formation of the fully functional club and unveil an unusual development mechanism. A flexible membrane initially folded within the club cavity expands to form the new club’s envelope. Mineralization proceeds inwards by mineral deposition from this membrane, which contains proteins regulating mineralization. Building a transcriptome of the club tissue and probing it with proteomic data, we identified and sequenced Club Mineralization Protein 1 (CMP-1), an abundant mildly phosphorylated protein from the flexible membrane suggested to be involved in calcium phosphate mineralization of the club, as indicated by in vitro studies using recombinant CMP-1. This work provides a comprehensive picture of the development of a complex hard tissue, from the secretion of its organic macromolecular template to the formation of the fully functional club.
机译:生物矿化是矿化组织通过生物成矿物质沉积而生长和变硬的过程,在许多产生矿物质的生物中是一个相对漫长的过程,这给研究复杂的硬矿化组织的生长和生物矿化带来了挑战。节肢动物是研究生物矿化的理想模式生物,因为它们定期蜕皮并在相对较快的时间内生长出新骨骼,从而提供了追踪整个组织矿化的机会。在这里,我们在蜕皮之后立即监测了螳螂虾根茎棍的生物矿化作用(一种基于模型的生物磷灰石的矿化结构,具有出色的机械性能),在蜕皮后立即形成功能齐全的棍,并揭示了一种异常的发育机制。最初折叠在球杆腔内的柔性膜会膨胀,形成新球杆的封套。矿化作用是通过该膜中的矿物质沉积而向内进行的,该膜中含有调节矿化作用的蛋白质。建立球杆组织的转录组并用蛋白质组学数据进行探测,我们鉴定并测序了球杆矿化蛋白1(CMP-1),该蛋白是来自柔性膜的大量轻度磷酸化蛋白,提示其参与了球杆的磷酸钙矿化,使用重组CMP-1进行的体外研究表明。这项工作为复杂的硬组织的发展提供了全面的图像,从其有机大分子模板的分泌到功能齐全的球杆的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号