首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Flow-induced phase separation of active particles is controlled by boundary conditions
【2h】

Flow-induced phase separation of active particles is controlled by boundary conditions

机译:流动引起的活性颗粒相分离受边界条件的控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Active particles, including swimming microorganisms, autophoretic colloids, and droplets, are known to self-organize into ordered structures at fluid–solid boundaries. The entrainment of particles in the attractive parts of their spontaneous flows has been postulated as a possible mechanism underlying this phenomenon. Here, combining experiments, theory, and numerical simulations, we demonstrate the validity of this flow-induced ordering mechanism in a suspension of active emulsion droplets. We show that the mechanism can be controlled, with a variety of resultant ordered structures, by simply altering hydrodynamic boundary conditions. Thus, for flow in Hele–Shaw cells, metastable lines or stable traveling bands can be obtained by varying the cell height. Similarly, for flow bounded by a plane, dynamic crystallites are formed. At a no-slip wall, the crystallites are characterized by a continuous out-of-plane flux of particles that circulate and re-enter at the crystallite edges, thereby stabilizing them. At an interface where the tangential stress vanishes, the crystallites are strictly 2D, with no out-of-plane flux. We rationalize these experimental results by calculating, in each case, the slow viscous flow produced by the droplets and the long-ranged, many-body active forces and torques between them. The results of numerical simulations of motion under the action of the active forces and torques are in excellent agreement with experiments. Our work elucidates the mechanism of flow-induced phase separation in active fluids, particularly active colloidal suspensions, and demonstrates its control by boundaries, suggesting routes to geometric and topological phenomena in an active matter.
机译:众所周知,包括游泳微生物,自体胶体和液滴在内的活性颗粒会在流体-固体边界自组织成有序结构。据推测,在自发流动的吸引部分中夹带颗粒是造成这种现象的可能机制。在这里,结合实验,理论和数值模拟,我们证明了在活性乳液液滴的悬浮液中这种流动诱导的有序机制的有效性。我们表明,可以通过简单地更改水动力边界条件来控制具有多种结果有序结构的机制。因此,对于Hele-Shaw细胞的流动,可以通过改变细胞高度来获得亚稳态谱线或稳定的传播带。类似地,对于以平面为边界的流动,形成动态微晶。在防滑壁处,微晶的特征是连续的平面外粒子流在微晶边缘循环并重新进入,从而使其稳定。在切向应力消失的界面上,微晶严格是二维的,没有面外通量。我们通过计算每种情况下液滴产生的缓慢粘性流动以及它们之间的长距离,多体作用力和转矩来合理化这些实验结果。在作用力和转矩作用下运动的数值模拟结果与实验非常吻合。我们的工作阐明了在活性流体(尤其是活性胶体悬浮液)中流动引起的相分离的机理,并证明了其受边界控制,并提出了在活性物质中通向几何和拓扑现象的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号