首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Ligand noninnocence in coordination complexes vs. kinetic mechanistic and selectivity issues in electrochemical catalysis
【2h】

Ligand noninnocence in coordination complexes vs. kinetic mechanistic and selectivity issues in electrochemical catalysis

机译:配位化合物中的配体无毒与电化学催化中的动力学机理和选择性问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The world of coordination complexes is currently stimulated by the quest for efficient catalysts for the electrochemical reactions underlying modern energy and environmental challenges. Even in the case of a multielectron−multistep process, catalysis starts with uptake or removal of one electron from the resting state of the catalyst. If this first step is an outer-sphere electron transfer (triggering a “redox catalysis” process), the electron distribution over the metal and the ligand is of minor importance. This is no longer the case with “chemical catalysis,” in which the active catalyst reacts with the substrate in an inner-sphere manner, often involving the transient formation of a catalyst−substrate adduct. The fact that, in most cases, the ligand is “noninnocent,” in the sense that the electron density and charge gained (or removed) from the resting state of the catalyst are shared between the metal and the ligand, has become common-place knowledge over the last half-century. Insistent focus on a large degree of noninnocence of the ligand in the resting state of the catalyst, even robustly validated by spectroscopic techniques, may lead to undermining the essential role of the metal when such essential issues as kinetics, mechanisms, and product selectivity are dealt with. These points are general in scope, but their discussion is eased by adequately documented examples. This is the case for reactions involving metalloporphyrins as well as vitamin B12 derivatives and similar cobalt complexes for which a wealth of experimental data is available.
机译:目前,对于寻求有效催化剂以应对现代能源和环境挑战的电化学反应,刺激了配位化合物的世界。即使在多电子多步骤工艺的情况下,催化也从吸收或从催化剂的静止状态吸收一个电子开始。如果第一步是外层电子转移(触发“氧化还原催化”过程),那么电子在金属和配体上的分布就没有多大的意义。 “化学催化”不再是这种情况,在化学催化中,活性催化剂以内球的方式与底物反应,通常涉及催化剂-底物加合物的瞬时形成。在大多数情况下,配体是“非纯的”这一事实,即从催化剂的静止状态获得(或除去)的电子密度和电荷在金属和配体之间共享的意义上,已经很普遍了。过去半个世纪的知识。在解决动力学,机理和产物选择性等基本问题时,即使在光谱技术上得到稳健的验证,也不能一味地关注催化剂在静止状态时配体的高度纯正,这可能会破坏金属的基本作用。用。这些要点是一般性的,但是通过充分记录的示例可以简化其讨论。对于涉及金属卟啉以及维生素B12衍生物和类似钴配合物的反应,情况就是如此,可获得大量实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号