首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Triplet–triplet energy transfer in artificial and natural photosynthetic antennas
【2h】

PNAS Plus: Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

机译:PNAS Plus:人工和天然光合天线中的三重态-三重态能量传递

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.
机译:在光合作用生物中,类胡萝卜素分子提供了防止由于单线态氧引起的光氧化应激的保护,类胡萝卜素分子在使单线态氧敏化之前先将叶绿素三线态物种淬灭。在低氧的产氧光合生物中,叶绿素到类胡萝卜素三重态-三重态能量传递(T-TET)缓慢,在数十纳秒范围内,而在富含氧的氧气叶绿体中超快进化的光合生物。为了更好地理解导致T-TET动力学适应环境氧活度的结构特征和由此产生的电子耦合,我们进行了两种具有不同构象并因此生色团间电子相互作用的异构化卟啉卟啉分子二元体的实验和理论研究。这对二重体再现了快速和慢速T-TET的特征,包括在光合作用中观察到的强电子耦合和快速T-TET的基于共振拉曼光谱的标记。正如通过密度泛函理论(DFT)计算所确定的,与快速T-TET相关的光谱标记主要是由于发色团间相互作用引起的三重态的类胡萝卜素骨架的几何扰动。对于自然系统也是如此,如混合量子力学/分子力学(QM / MM)对来自氧气(LHCII)和产氧生物(LH2)的光收集蛋白的模拟所证明的。 DFT和电子顺磁共振(EPR)分析都进一步表明,在T-TET上,三重态波函数位于两个双体中的类胡萝卜素上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号