首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol
【2h】

Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol

机译:克服限制木质纤维素生物质高固体发酵为乙醇的因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simultaneous saccharification and fermentation (SSF) of solid biomass can reduce the complexity and improve the economics of lignocellulosic ethanol production by consolidating process steps and reducing end-product inhibition of enzymes compared with separate hydrolysis and fermentation (SHF). However, a long-standing limitation of SSF has been too low ethanol yields at the high-solids loading of biomass needed during fermentation to realize sufficiently high ethanol titers favorable for more economical ethanol recovery. Here, we illustrate how competing factors that limit ethanol yields during high-solids fermentations are overcome by integrating newly developed cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment with SSF. First, fed-batch glucose fermentations by Saccharomyces cerevisiae D5A revealed that this strain, which has been favored for SSF, can produce ethanol at titers of up to 86 g⋅L−1. Then, optimizing SSF of CELF-pretreated corn stover achieved unprecedented ethanol titers of 79.2, 81.3, and 85.6 g⋅L−1 in batch shake flask, corresponding to ethanol yields of 90.5%, 86.1%, and 80.8% at solids loadings of 20.0 wt %, 21.5 wt %, and 23.0 wt %, respectively. Ethanol yields remained at over 90% despite reducing enzyme loading to only 10 mg protein⋅g glucan−1 [∼6.5 filter paper units (FPU)], revealing that the enduring factors limiting further ethanol production were reduced cell viability and glucose uptake by D5A and not loss of enzyme activity or mixing issues, thereby demonstrating an SSF-based process that was limited by a strain’s metabolic capabilities and tolerance to ethanol.
机译:与单独的水解和发酵(SHF)相比,固体生物质的同时糖化和发酵(SSF)可以通过合并工艺步骤并减少酶对终产物的抑制作用,从而降低复杂性并提高木质纤维素乙醇生产的经济性。然而,SSF的长期局限性在于发酵过程中需要高固体含量的生物质时乙醇产量过低,以实现足够高的乙醇滴度,有利于更经济地回收乙醇。在这里,我们说明了如何通过将新开发的助溶剂增强木质纤维素分级分离(CELF)预处理与SSF集成来克服限制高固体发酵过程中限制乙醇产量的竞争因素。首先,酿酒酵母D5A的分批补料葡萄糖发酵表明,该菌株(受SSF的青睐)可以产生最高86 g·L -1 的滴度乙醇。然后,优化CELF预处理的玉米秸秆的SSF,在分批摇瓶中获得了前所未有的乙醇滴度79.2、81.3和85.6 g·L -1 -1,对应乙醇产率分别为90.5%,86.1%和当固体负载量分别为20.0 wt%,21.5 wt%和23.0 wt%时为80.8%。尽管酶负荷降低至仅10 mg蛋白·g葡聚糖 -1 [〜6.5滤纸单位(FPU)],乙醇收率仍保持在90%以上,这表明减少了限制进一步乙醇生产的持久性因素细胞活力和D5A对葡萄糖的吸收,而不是酶活性或混合问题的损失,从而证明了基于SSF的过程受到菌株的代谢能力和对乙醇的耐受性的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号