首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Electrostatic confinement and manipulation of DNA molecules for genome analysis
【2h】

Electrostatic confinement and manipulation of DNA molecules for genome analysis

机译:用于基因组分析的DNA分子的静电限制和操作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analyte “issues” as exploitable advantages by our invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecular gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an “electrostatic bottle.” This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslits, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the Mesoplasma florum genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.
机译:非常大的DNA分子可以对复杂的基因组进行全面分析,例如人类,癌症和植物,因为它们跨越了序列重复和复杂的体细胞事件。当以物理方式操作或作为单个分子进行分析时,长聚电解质会出现问题,因为机械方面的考虑包括剪切介导的断裂,处理这些线圈的巨大尺寸或使用常规实验技术和流体装置拉伸的DNA的长度。因此,通过我们的发明和“分子门”的表征,我们将分析物“问题”作为可利用的优势加以利用,“分子门”可控制和同步纳米狭缝几何结构内DNA哑铃形式的拉伸DNA分子的形成。分子门的几何结构包括微米和纳米尺度的特征,旨在以非常有效的方式制造出“静电瓶”,从而协同极低的离子强度条件。这种效果极大地增强了大狭缝几何形状内的分子限制,即使没有哑铃形成,也可以支持纳米缝隙的便捷,同步的电动负载。通过计算机仿真,可以在分子和连续尺度上考虑设备的几何形状,这也指导了我们优化设计和功能的努力。此外,我们表明分子门可能控制DNA分离,因为可以通过改变施加的电压以分子依赖的方式电动触发DNA分子进入狭缝。最后,通过同步哑铃形成来绘制中型群基因组图谱,验证了我们的新生方法是高级开发的可行起点,它将建立能够进行大规模基因组分析的集成系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号