【2h】

Optical antenna enhanced spontaneous emission

机译:光学天线增强的自发发射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.
机译:原子和分子太小,无法充当其自身发射波长的有效天线。通过提供外部光学天线,可以改变平衡。自发发射的速度可能比受激发射的速度快,而受激发射的速度受实际可达到的泵浦强度的限制。在我们的实验中,对于d = 40 nm的天线间隙,以约200 THz的光频率发射的InGaAsP纳米棒显示出自发发射强度增强了35倍,相当于自发速率加快了约115倍。经典天线理论预测在d〜10 nm处约有2500倍的自发发射速度,与1 / d 2 成比例。不幸的是,在d <10 nm时,由于光学扩散阻力而使天线效率下降到50%以下,异常皮肤效应(电子表面碰撞)加剧了光扩散阻力。发射极激发状态下的量子偶极子振荡产生光交流等效电路电流,Io =qω| xo | / d,馈送天线增强的自发发射,其中q | xo |是偶极矩阵元素。尽管驱动电流是量子力学的起源,但天线理论既未引用赛尔效应,也未引用状态模型的局部密度。此外,在200 THz时,等离子体效应很小,仅产生很小的天线谐振频率偏移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号