首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles
【2h】

Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles

机译:负载在钛-钌氧化物上的铂是用于氢燃料电池汽车的非常稳定的电催化剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
机译:我们报告了用于氢燃料电池汽车的独特且高度稳定的电催化剂-载于钛-氧化钌(TRO)上的铂(Pt)。 Pt / TRO电催化剂暴露于严格的加速测试方案中,该方案旨在诱发与燃料电池汽车长时间正常运行相同的降解和失效机理,即在车辆启动和停车期间的腐蚀以及在车辆加速和加速过程中铂的溶解。减速。这些实验既可在原地(在沉积在玻璃碳旋转盘电极上的载体和催化剂上)进行,也可在原地(在膜电极组件中)进行。将Pt / TRO与最先进的基准催化剂(高表面积碳载Pt(Pt / HSAC))进行了比较。在异位测试中,Pt / TRO仅损失了其初始氧还原反应质量活性的18%和其氧还原反应的比活性的3%,而Pt / HSAC的相应损失分别为52%和22%。在对膜电极组件进行的原位加速降解测试中,Pt / TRO在100%RH下1 A·cm -2 时的电池电压损失对于Pt / TRO而言为15 mV可以忽略不计,而该损失为太高,以至于Pt / HSAC无法在1 A·cm −2 下工作。我们清楚地表明,在燃料电池启动和关闭期间引发的电催化剂支持腐蚀是一种比在燃料电池运行期间溶解铂更有效的失效模式。因此,我们认为对高度稳定的支持(例如TRO)的需求至关重要。最后,我们证明燃料电池的气体扩散层中存在的碳腐蚀仅是次要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号