【2h】

Understanding the mechanism of proteasome 20S core particle gating

机译:了解蛋白酶体20S核心粒子门控的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The 20S core particle proteasome is a molecular machine playing an important role in cellular function by degrading protein substrates that no longer are required or that have become damaged. Regulation of proteasome activity occurs, in part, through a gating mechanism controlling the sizes of pores at the top and bottom ends of the symmetric proteasome barrel and restricting access to catalytic sites sequestered in the lumen of the structure. Although atomic resolution models of both open and closed states of the proteasome have been elucidated, the mechanism by which gates exchange between these states remains to be understood. Here, this is investigated by using magnetization transfer NMR spectroscopy focusing on the 20S proteasome core particle from Thermoplasma acidophilum. We show from viscosity-dependent proteasome gating kinetics that frictional forces originating from random solvent motions are critical for driving the gating process. Notably, a small effective hydrodynamic radius (EHR; <4Å) is obtained, providing a picture in which gate exchange proceeds through many steps involving only very small segment sizes. A small EHR further suggests that the kinetics of gate interconversion will not be affected appreciably by large viscogens, such as macromolecules found in the cell, so long as they are inert. Indeed, measurements in cell lysate reveal that the gate interconversion rate decreases only slightly, demonstrating that controlled studies in vitro provide an excellent starting point for understanding regulation of 20S core particle function in complex, biologically relevant environments.
机译:20S核心颗粒蛋白酶体是一种分子机器,它通过降解不再需要或已经受损的蛋白质底物而在细胞功能中发挥重要作用。蛋白酶体活性的调节部分是通过控制对称蛋白酶体桶顶端和底端孔的大小并限制进入隔离在结构腔中的催化位点的门控机制来实现的。尽管已经阐明了蛋白酶体打开状态和关闭状态的原子分辨率模型,但是在这些状态之间进行门交换的机制仍有待了解。在这里,这是通过使用磁化转移NMR光谱研究的,该光谱聚焦于嗜酸嗜热单胞菌的20S蛋白酶体核心颗粒。我们从粘度依赖性蛋白酶体选通动力学表明,源自随机溶剂运动的摩擦力对于驱动选通过程至关重要。值得注意的是,获得了很小的有效流体动力学半径(EHR; <4Å),从而提供了一张图片,其中闸门交换通过许多步骤进行,而这些步骤仅涉及非常小的段尺寸。较小的EHR进一步表明,门互变的动力学不会受到大分子粘稠剂(例如细胞中发现的大分子)的明显影响,只要它们是惰性的即可。确实,细胞裂解物中的测量结果表明,门的互转化率仅略有降低,这表明体外对照研究为理解复杂的生物学相关环境中20S核心颗粒功能的调节提供了一个极好的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号