首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy
【2h】

Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy

机译:超声触发的可逆交联水凝胶的破坏和自我修复用于药物输送和增强化学疗法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Biological systems are exquisitely sensitive to the location and timing of physiologic cues and drugs. This spatiotemporal sensitivity presents opportunities for developing new therapeutic approaches. Polymer-based delivery systems are used extensively for attaining localized, sustained release of bioactive molecules. However, these devices typically are designed to achieve a constant rate of release. We hypothesized that it would be possible to create digital drug release, which could be accelerated and then switched back off, on demand, by applying ultrasound to disrupt ionically cross-linked hydrogels. We demonstrated that ultrasound does not permanently damage these materials but enables nearly digital release of small molecules, proteins, and condensed oligonucleotides. Parallel in vitro studies demonstrated that the concept of applying temporally short, high-dose “bursts” of drug exposure could be applied to enhance the toxicity of mitoxantrone toward breast cancer cells. We thus used the hydrogel system in vivo to treat xenograft tumors with mitoxantrone, and found that daily ultrasound-stimulated drug release substantially reduced tumor growth compared with sustained drug release alone. This approach of digital drug release likely will be applicable to a broad variety of polymers and bioactive molecules, and is a potentially useful tool for studying how the timing of factor delivery controls cell fate in vivo.
机译:生物系统对生理线索和药物的位置和时间极为敏感。这种时空敏感性为开发新的治疗方法提供了机会。基于聚合物的递送系统被广泛用于实现生物活性分子的局部,持续释放。但是,通常将这些设备设计为实现恒定的释放速率。我们假设有可能创建数字药物释放,可以通过应用超声破坏离子交联的水凝胶来加速释放,然后根据需要关闭。我们证明了超声波不会永久性地破坏这些材料,但可以使小分子,蛋白质和缩合的寡核苷酸几乎以数字方式释放。并行的体外研究表明,应用短暂的,大剂量的“短暂爆发”药物暴露的概念可用于增强米托蒽醌对乳腺癌细胞的毒性。因此,我们在体内使用水凝胶系统用米托蒽醌治疗异种移植肿瘤,发现与单独持续药物释放相比,每日超声刺激的药物释放显着降低了肿瘤的生长。这种数字药物释放的方法可能将适用于多种聚合物和生物活性分子,并且对于研究因子递送的时机如何控制体内细胞命运的方法可能是有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号