首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations
【2h】

Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

机译:通过原子模拟映射位错-缺陷相互作用的应变率依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed.
机译:探究应变速率低于10 6 s -1 的缺陷-缺陷相互作用的机制是迄今为止分子动力学(MD)技术尚未解决的挑战。在这里,我们提出了一种基于过渡态理论和应变相关有效激活势垒概念的原始原子方法,该方法能够模拟几乎任何应变速率下位错-缺陷相互作用的动力学,例如在10 到10 7 s -1 。我们将这种方法应用于边缘位错在剪切变形下与自填隙原子(SIAs)簇碰撞的问题。使用激活松弛算法[Kushima A等人。 (2009)J Chem Phys 130:224504],我们发现了一种独特的应变速率依赖性触发机制,该机制使SIA团簇在过程中被吸收,从而导致位错爬升。在这一发现的指导下,我们确定了触发机制的激活势垒,作为剪切应变的函数,并将其用于粗粒度率方程式中,以构造应变率和温度的相空间中的机制图。我们从10 5 到10 7 s -1 。讨论了本方法在以前认为是原子模拟无法接近的应变率机制下探测分子水平机制的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号