【2h】

Modeling nuclear volume isotope effects in crystals

机译:模拟晶体中的核体积同位素效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.
机译:由原子的体积和形状差异(场移效应)驱动的与质量无关的同位素分馏在若干元素中是已知的,并且可能会在更多元素中发现。全电子相对论性电子结构计算可以预测这种影响,但是目前计算量很大,并且仅限于对小型气相分子和团簇进行建模。使用投影仪增强波方法(DFT-PAW)的密度泛函理论,在保留有关化学对原子核内电子密度影响的信息的同时,具有更高的速度和与三维周期性边界条件的兼容性,具有优势。这些电子密度变化决定了场移效应的体积分量。在这项研究中,针对全电子,相对论狄拉克-哈特里-福克和具有单,双(三重)激发方法的耦合簇对DFT-PAW计算进行了校准,以估计核体积同位素效应。当使用由有限原子核构建的PAW数据集时,DFT-PAW计算可准确再现典型分子中原子核内电子密度的变化。计算出了元素镉和汞对气相结晶同位素分馏的核体积贡献,与实验吻合良好。计算了原子蒸气与蒙脱石(HgO),朱砂(HgS),甘汞(Hg2Cl2),蒙脱石(CdO)和CdS多晶型辉绿岩和绿辉石之间的汞和镉同位素分馏的核体积成分。这表明优先引入中子氧化的离子键合相中的富含同位素。最后,场位移能与Mössbauer异构体位移有关,并根据 119 Sn光谱计算了几种含锡晶体的平衡质量独立分数。异构体位移数据应简化其他具有穆斯堡尔同位素的元素(如铂和铀)中与质量无关的同位素分馏的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号