首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase
【2h】

Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase

机译:通过突变纤维素合成酶的C端跨膜区残基CESA1A903V和CESA3T942I降低纤维素微纤维的结晶度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1A903V and CESA3T942I in Arabidopsis thaliana. Using 13C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1A903V and CESA3T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1A903V and CESA3T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.
机译:植物中纤维素生物合成的基础机制很复杂,但仍知之甚少。一个中心问题涉及微纤维结构的机理,以及如何将其与纤维素合成酶(CESA)的催化聚合作用联系起来。此外,尚不清楚是否可以通过遗传方式实现纤维素微原纤维结构的修饰,这在以生物为基础的经济中可能具有转化性。为了探索植物中的这些过程,我们开发了药理学抑制剂的化学遗传工具箱,以及CESA1 A903V 和CESA3 T942I 在拟南芥中。使用 13 C固态核磁共振波谱和X射线衍射,我们发现纤维素微纤维的宽度减小,并且纤维素C4峰增加,表明表面之间存在结晶度和内部的野生型葡聚糖,表明微纤丝形成过程中葡聚糖链缔合的差异。与较低的微原纤维结晶度的测量结果一致,突变的CESA1 A903V 和CESA3 T942I 的纤维素提取物显示出比野生型更高的糖化效率。使用活细胞成像来追踪荧光标记的CESA,我们发现这些突变体显示出质膜中CESA的速度增加,表明聚合速率增加。总的来说,这些数据表明CESA1 A903V 和CESA3 T942I 在结晶度方面已经修饰了微纤维结构,并暗示在植物中,如在细菌中,结晶在物理上限制了聚合。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号