首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the Cover: Liquid-infused structured surfaces with exceptional anti-biofouling performance
【2h】

From the Cover: Liquid-infused structured surfaces with exceptional anti-biofouling performance

机译:从封面开始:注入液体的结构化表面具有出色的抗生物污垢性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of antimicrobial treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters or implants, frequently impossible. At the same time, strategies for biofilm prevention based on surface chemistry treatments or surface microstructure have been found to only transiently affect initial attachment. Here we report that Slippery Liquid-Infused Porous Surfaces (SLIPS) prevent 99.6% of Pseudomonas aeruginosa biofilm attachment over a 7-d period, as well as Staphylococcus aureus (97.2%) and Escherichia coli (96%), under both static and physiologically realistic flow conditions. In contrast, both polytetrafluoroethylene and a range of nanostructured superhydrophobic surfaces accumulate biofilm within hours. SLIPS show approximately 35 times the reduction of attached biofilm versus best case scenario, state-of-the-art PEGylated surface, and over a far longer timeframe. We screen for and exclude as a factor cytotoxicity of the SLIPS liquid, a fluorinated oil immobilized on a structured substrate. The inability of biofilm to firmly attach to the surface and its effective removal under mild flow conditions (about 1 cm/s) are a result of the unique, nonadhesive, “slippery” character of the smooth liquid interface, which does not degrade over the experimental timeframe. We show that SLIPS-based antibiofilm surfaces are stable in submerged, extreme pH, salinity, and UV environments. They are low-cost, passive, simple to manufacture, and can be formed on arbitrary surfaces. We anticipate that our findings will enable a broad range of antibiofilm solutions in the clinical, industrial, and consumer spaces.
机译:细菌主要存在于坚固的,与表面相关的生物膜群落中,在自然和人为环境中普遍存在。成熟的生物膜可抵抗多种抗菌治疗,并构成持续的致病性威胁。粘附生物膜的处理困难,成本高昂,并且在诸如导管或植入物的医疗系统中,通常是不可能的。同时,已经发现基于表面化学处理或表面微观结构的生物膜预防策略只能暂时影响初始附着。在这里,我们报道,在静态和生理性作用下,湿滑的多孔液体表面(SLIPS)在7天内阻止了99.6%的铜绿假单胞菌生物膜附着以及金黄色葡萄球菌(97.2%)和大肠杆菌(96%)。现实的流动条件。相反,聚四氟乙烯和一系列纳米结构的超疏水表面都在数小时内积聚生物膜。与最佳情况,最先进的PEG化表面相比,SLIPS显示附着的生物膜减少了约35倍,并且持续时间更长。我们筛选并排除了SLIPS液体中固定在结构化基质上的氟化油的细胞毒性。生物膜不能牢固地附着在表面上,在温和的流动条件下(约1厘米/秒)无法有效去除,是由于光滑的液体界面具有独特的,非粘性的,``滑溜''的特性,在整个过程中不会降解实验时间表。我们表明基于SLIPS的抗生物膜表面在浸没,极端pH,盐度和紫外线环境下均稳定。它们是低成本,无源的,易于制造的,并且可以在任意表面上形成。我们期望我们的发现将为临床,工业和消费者领域提供广泛的抗生物膜解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号