首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2
【2h】

Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

机译:CO2升高下亚热带植被最大叶片电导的优化导致气候强迫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plant physiological adaptation to the global rise in atmospheric CO2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by growing leaves with altered stomatal densities and pore sizes. The structural adaptations reduce maximal stomatal conductance (gsmax) and constrain the dynamic responses of gs. Here, we develop and validate models that simulate structural stomatal adaptations based on diffusion of CO2 and water vapor through stomata, photosynthesis, and optimization of carbon gain under the constraint of a plant physiological cost of water loss. We propose that the ongoing optimization of gsmax is eventually limited by species-specific limits to phenotypic plasticity. Our model reproduces observed structural stomatal adaptations and predicts that adaptation will continue beyond double CO2. Owing to their distinct stomatal dimensions, angiosperms reach their phenotypic response limits on average at 740 ppm and conifers on average at 1,250 ppm CO2. Further, our simulations predict that doubling today's CO2 will decrease the annual transpiration flux of subtropical vegetation in Florida by ≈60 W·m−2. We conclude that plant adaptation to rising CO2 is altering the freshwater cycle and climate and will continue to do so throughout this century.
机译:植物生理适应大气CO2浓度(CO2)的全球上升是关键的气候强迫。为了在二氧化碳增加的条件下优化功能,植物会通过关闭气孔来动态降低其叶片(gs)的扩散气孔导度,并通过生长气孔密度和孔径改变的叶片来结构上降低其扩散气孔导度。结构的适应性降低最大气孔导度(gsmax)并限制gs的动态响应。在这里,我们开发和验证的模型可以模拟结构气孔的适应,该模型基于二氧化碳和水蒸气通过气孔的扩散,光合作用以及在植物水分流失的生理代价的约束下优化碳的获得。我们建议,gsmax的持续优化最终受特定于表型可塑性的限制。我们的模型再现了观察到的结构气孔适应性,并预测适应性将继续超过二氧化碳的两倍。由于其独特的气孔尺寸,被子植物的表型响应极限平均为740 ppm,针叶树平均为1,250 ppm CO2。此外,我们的模拟预测,今天的CO2倍增将使佛罗里达亚热带植被的年蒸腾通量减少≈60W·m −2 。我们得出的结论是,植物对不断上升的CO2的适应作用正在改变淡水循环和气候,并将在整个本世纪继续如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号