首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Spatial Cyberinfrastructure Special Feature: Using spatial principles to optimize distributed computing for enabling the physical science discoveries
【2h】

Spatial Cyberinfrastructure Special Feature: Using spatial principles to optimize distributed computing for enabling the physical science discoveries

机译:空间网络基础设施的特色:利用空间原理优化分布式计算以支持物理科学发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
机译:当代物理科学研究依靠对地理上分散的空间数据的有效分析和对物理现象的模拟。单台计算机和通用高端计算不足以处理用于复杂物理科学分析和模拟的数据,只有通过分布式计算才能成功地支持该数据,而通过应用空间原理可以对其进行最佳优化。空间计算是空间网络基础设施的计算方面,是指一种利用空间原理来优化分布式计算机以促进物理科学进步的计算范例。空间原理通过提供空间联系和约束条件来驱动现象的发展,来控制跨时空的科学参数之间的相互作用。因此,空间计算研究可以使我们更好地利用空间原理来模拟物理现象,并进而推动物理科学的发展。本文以地理空间科学为例,通过三个研究示例说明了空间计算如何(i)通过有效的数据/服务搜索,访问和利用来启用数据密集型科学,(ii)通过实现高性能计算来促进物理科学研究功能;(iii)使科学家能够使用多维可视化工具来了解观测和模拟。这些研究实例表明,空间计算对于设计计算方法以促进物理科学研究具有更好的数据访问,现象模拟和分析可视化至关重要。我们设想,空间计算将成为驱动21世纪基础物理科学进步的核心技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号