首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport
【2h】

Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport

机译:一氧化氮可引起根尖分生组织缺陷并抑制生长同时减少依赖于PIN-FORMED 1(PIN1)的向上生长素运输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1ox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1ox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1ox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1ox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.
机译:一氧化氮(NO)被认为是植物发育过程和防御的关键调节剂,尽管NO行动的机理和直接目标仍是未知之数。我们在拟南芥中进行了表型,细胞和遗传分析,以探讨NO在调节初生根生长和植物生长素运输中的作用。与2-(4-羧基苯基)的NO耗竭相比,用NO供体S-亚硝基-N-乙酰青霉胺,硝普钠和S-亚硝基谷胱甘肽处理可减少细胞分裂,通过减少细胞大小和数量来影响有丝分裂细胞的分布和分生组织大小。 )-4,4,5,5-四甲基咪唑啉-1-氧基-3-氧化物(cPTIO)。有趣的是,内源NO水平升高的遗传背景[叶绿素a / b结合蛋白表达不足1 / NO生产过高的1(提示1 / nox1)反映了这种反应,并增加了细胞分化表型。由于生长素的分布在调节初生根生长中的重要性,因此我们在改变NO水平后分析了生长素依赖性反应。一氧化氮供应增加和一氧化氮过量生产的拟南芥突变体cue1 / nox1都显示出生长素报告基因标记DR5pro:GUS / GFP的表达降低。这些影响伴随着初级根中生长素运输的减少。 NO的应用和cue1 / nox1突变导致蛋白酶形成独立于蛋白酶体的方式减少了PIN-FORMED 1(PIN1)-GFP荧光。值得注意的是,cue1 / nox1突变型的根表型与pin1突变型的相似。同时使用化学处理方法和具有改变的NO水平的突变体均表明,高水平的NO通过PIN1依赖的机制降低了植物生长素的运输和响应,并且根分生组织的活性也随之降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号