首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Regenerative Medicine Special Feature: Enabling tools for engineering collagenous tissues integrating bioreactors intravital imaging and biomechanical modeling
【2h】

Regenerative Medicine Special Feature: Enabling tools for engineering collagenous tissues integrating bioreactors intravital imaging and biomechanical modeling

机译:再生医学的特色:用于整合生物反应器活体成像和生物力学建模的工程化胶原组织的辅助工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many investigators have engineered diverse connective tissues having good mechanical properties, yet few tools enable a global understanding of the associated formation of collagen fibers, the primary determinant of connective tissue stiffness. Toward this end, we developed a biomechanical model for collagenous tissues grown on polymer scaffolds that accounts for the kinetics of polymer degradation as well as the synthesis and degradation of multiple families of collagen fibers in response to cyclic strains imparted in a bioreactor. The model predicted well both overall thickness and stress-stretch relationships for tubular engineered vessels cultured for 8 weeks, and suggested that a steady state had not yet been reached. To facilitate future refinements of the model, we also developed bioreactors that enable intravital nonlinear optical microscopic imaging. Using these tools, we found that collagen fiber alignment was driven strongly by nondegraded polymer fibers at early times during culture, with subsequent mechano-stimulated dispersal of fiber orientations as polymer fibers degraded. In summary, mathematical models of growth and remodeling of engineered tissues cultured on polymeric scaffolds can predict evolving tissue morphology and mechanics after long periods of culture, and related empirical observations promise to further our understanding of collagen matrix development in vitro.
机译:许多研究人员设计了具有良好机械性能的各种结缔组织,但很少有工具能够全面了解胶原纤维的相关形成,而胶原纤维是结缔组织刚度的主要决定因素。为此,我们开发了一种在聚合物支架上生长的胶原组织的生物力学模型,该模型解释了聚合物降解的动力学以及响应于生物反应器中赋予的周期性应变的多个家族的胶原纤维的合成和降解。该模型很好地预测了培养8周的管状工程容器的总体厚度和应力-拉伸关系,并暗示尚未达到稳态。为了促进模型的进一步完善,我们还开发了生物反应器,可进行活体内非线性光学显微成像。使用这些工具,我们发现胶原蛋白纤维的排列在培养过程的早期受到未降解的聚合物纤维的强烈驱动,随后随着聚合物纤维的降解,机械取向的纤维取向分散。总而言之,经过长期培养后,在高分子支架上培养的工程组织的生长和重塑的数学模型可以预测不断发展的组织形态和力学,相关的经验观察有望进一步增进我们对体外胶原基质发展的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号