首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
【2h】

Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis

机译:大肠杆菌和结核分枝杆菌的基因组规模代谢和调控网络的概率整合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Prediction of metabolic changes that result from genetic or environmental perturbations has several important applications, including diagnosing metabolic disorders and discovering novel drug targets. A cardinal challenge in obtaining accurate predictions is the integration of transcriptional regulatory networks with the corresponding metabolic network. We propose a method called probabilistic regulation of metabolism (PROM) that achieves this synthesis and enables straightforward, automated, and quantitative integration of high-throughput data into constraint-based modeling, making it an ideal tool for constructing genome-scale regulatory-metabolic network models for less-studied organisms. PROM introduces probabilities to represent gene states and gene–transcription factor interactions. By using PROM, we constructed an integrated regulatory-metabolic network for the model organism, Escherichia coli, and demonstrated that our method based on automated inference is more accurate and comprehensive than the current state of the art, which is based on manual curation of literature. After validating the approach, we used PROM to build a genome-scale integrated metabolic-regulatory model for Mycobacterium tuberculosis, a critically important human pathogen. This study incorporated data from more than 1,300 microarrays, 2,000 transcription factor–target interactions regulating 3,300 metabolic reactions, and 1,905 KO phenotypes for E. coli and M. tuberculosis. PROM identified KO phenotypes with accuracies as high as 95%, and predicted growth rates quantitatively with correlation of 0.95. Importantly, PROM represents the successful integration of a top-down reconstructed, statistically inferred regulatory network with a bottom-up reconstructed, biochemically detailed metabolic network, bridging two important classes of systems biology models that are rarely combined quantitatively.
机译:由遗传或环境扰动引起的代谢变化的预测具有几个重要的应用,包括诊断代谢紊乱和发现新的药物靶标。获得准确预测的主要挑战是转录调节网络与相应代谢网络的整合。我们提出了一种称为新陈代谢的概率调节(PROM)的方法,该方法可以实现这种合成,并可以将高通量数据直接,自动和定量地集成到基于约束的模型中,从而使其成为构建基因组规模的调节代谢网络的理想工具研究较少的生物模型。 PROM引入了表示基因状态和基因-转录因子相互作用的概率。通过使用PROM,我们为模型生物大肠杆菌构建了一个整合的代谢系统网络,并证明了基于自动推断的方法比基于手动整理文献的当前技术水平更为准确和全面。 。验证该方法后,我们使用PROM为结核分枝杆菌(一种至关重要的人类病原体)建立了基因组规模的整合代谢调控模型。这项研究纳入了来自1,300多个微阵列,2,000个转录因子-靶标相互作用,调节3,300个代谢反应以及1,905个KO和大肠杆菌表型的数据。 PROM确定了KO表型的准确性高达95%,并定量预测了增长率,相关性为0.95。重要的是,PROM代表了自上而下的重建,统计学推断的调控网络与自下而上的重建,生化详细的代谢网络的成功整合,将两类重要的系统生物学模型桥接在一起,这些模型很少进行定量组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号