首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Special Feature: From the Cover: Complex Systems: From Chemistry to Systems Biology Special Feature: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
【2h】

Special Feature: From the Cover: Complex Systems: From Chemistry to Systems Biology Special Feature: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p

机译:特殊功能:从封面开始:复杂系统:从化学到系统生物学特殊功能:将高分辨率代谢通量表型与酵母中的转录调控联系起来由全球调控因子Gcn4p调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genome sequencing dramatically increased our ability to understand cellular response to perturbation. Integrating system-wide measurements such as gene expression with networks of protein–protein interactions and transcription factor binding revealed critical insights into cellular behavior. However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate mRNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental 13C-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator Gcn4p. Although mRNA expression alone did not directly predict metabolic response, this correlation improved through incorporating a network-based model of amino acid biosynthesis (from r = 0.07 to 0.80 for mRNA-flux agreement). The model provides evidence of general biological principles: rewiring of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow-on transcriptional regulators that were experimentally validated with additional 13C-based flux measurements. As a first step in linking metabolic control and genetic regulatory networks, this model underscores the importance of integrating diverse data types in large-scale cellular models. We anticipate that an integrated approach focusing on metabolic measurements will facilitate construction of more realistic models of cellular regulation for understanding diseases and constructing strains for industrial applications.
机译:基因组测序极大地提高了我们了解细胞对微扰反应的能力。将基因表达与蛋白质-蛋白质相互作用网络和转录因子结合网络等全系统范围的测量相结合,揭示了对细胞行为的关键见解。然而,系统生物学方法的潜力受到整合跨细胞功能水平的代谢测量的困难的限制,尽管它们与细胞表型联系最紧密。为了解决这个限制,我们开发了一种基于模型的方法来关联mRNA和代谢通量数据,该数据结合了来自交互网络模型和通量确定模型的信息。我们首先在没有全局调节剂Gcn4p的条件下,对处于压力下的酵母连续培养物中的5764个mRNA,54个代谢物和83个基于实验的 13 C反应通量进行了定量分析。尽管单独的mRNA表达不能直接预测代谢反应,但通过整合基于网络的氨基酸生物合成模型,这种相关性得到了改善(对于mRNA-flux一致性,从r = 0.07到0.80)。该模型提供了一般生物学原理的证据:通过转录调控和代谢物相互作用密度(即成对代谢物-蛋白质相互作用的水平)重新连接代谢通量(即使用不同的反应途径)作为关键的生物合成控制决定因素。此外,该模型在后续转录调节因子的研究中预测了通量重新布线,该研究已通过其他基于 13 C的通量测量实验验证。作为将代谢控制和遗传调控网络联系起来的第一步,该模型强调了将各种数据类型集成到大规模细胞模型中的重要性。我们预期以代谢测量为重点的综合方法将有助于构建更现实的细胞调节模型,以理解疾病并构建用于工业应用的菌株。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号