首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron
【2h】

Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron

机译:光合作用的最大量子产率增加是南大洋浮游植物对铁反应的重要组成部分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well established that an increase in iron supply causes an increase in total oceanic primary production in many regions, but the physiological mechanism driving the observed increases has not been clearly identified. The Southern Ocean iron enrichment experiment, an iron fertilization experiment in the waters closest to Antarctica, resulted in a 9-fold increase in chlorophyll (Chl) concentration and a 5-fold increase in integrated primary production. Upon iron addition, the maximum quantum yield of photosynthesis (φm) rapidly doubled, from 0.011 to 0.025 mol C·mol quanta−1. Paradoxically, this increase in light-limited productivity was not accompanied by a significant increase in light-saturated productivity (Pmaxb). Pmaxb, maximum Chl normalized productivity, was 1.34 mg C·mg Chl−1·h−1 outside and 1.49 mg C·mg Chl−1·h−1 inside the iron-enriched patch. The importance of φm as compared with Pmaxb in controlling the biological response to iron addition has vast implications for understanding the ecological response to iron. We show that an iron-driven increase in φm is the proximate physiological mechanism affected by iron addition and can account for most of the increases in primary production. The relative importance of φm over Pmaxb in this iron-fertilized bloom highlights the limitations of often-used primary productivity algorithms that are driven by estimates of Pmaxb but largely ignore variability in φm and light-limited productivity. To use primary productivity models that include variability in iron supply in prediction or forecasting, the variability of light-limited productivity must be resolved.
机译:众所周知,铁供应的增加会导致许多地区海洋初级总产量的增加,但是尚未清楚地发现驱动观测到的增加的生理机制。南大洋铁富集实验是在最南极洲的水域进行的铁肥实验,导致叶绿素(Chl)浓度增加了9倍,综合初级生产增加了5倍。添加铁后,光合作用的最大量子产率(φm)迅速翻倍,从0.011增加到0.025 mol C·mol Quanta -1 。矛盾的是,这种光极限生产率的提高并没有伴随着光饱和生产率的显着提高(Pmax b )。 Pmax b (最大Chl标准化生产率)为1.34 mg C·mg Chl -1 ·h -1 外面和1.49 mg C·mg Chl富铁斑块内的 -1 ·h -1 。与Pmax b 相比,φm在控制铁添加生物反应中的重要性对理解铁的生态反应具有重要意义。我们表明,铁驱动的φm增加是受铁添加影响的最接近的生理机制,可以解释初级生产的大部分增加。 φm相对于Pmax b 的相对重要性,突出了受Pmax b 估计驱动的常用初级生产力算法的局限性,但很大程度上忽略了变异性φm和光线受限的生产率。要使用在预测或预测中包括铁供应变化的主要生产力模型,必须解决光受限生产力的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号