首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release
【2h】

Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release

机译:突触素家族作为钙传感器在促进和异步神经递质释放中的作用的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ca2+ influx into presynaptic nerve terminals activates synaptic vesicle exocytosis by triggering fast synchronous fusion and a slower asynchronous release pathway. In addition, a brief rise in Ca2+ after consecutive action potentials has been correlated with a form of short-term synaptic plasticity with enhanced vesicle fusion termed facilitation. Although the synaptic vesicle protein Synaptotagmin 1 (Syt1) has been implicated as the Ca2+ sensor for synchronous fusion, the molecular identity of the Ca2+ sensors that mediate facilitation and asynchronous release is unknown. To test whether the synchronous Ca2+ sensor, Syt1, or the asynchronous Ca2+ sensor is involved in facilitation, we analyzed whether genetic elimination of Syt1 in Drosophila results in a concomitant impairment in facilitation. Our results indicate that Syt1 acts as a redundant Ca2+ sensor for facilitation, with the asynchronous Ca2+ sensor contributing significantly to this form of short-term plasticity. We next examined whether other members of the Drosophila Syt family functioned in Ca2+-dependent asynchronous release or facilitation in vivo. Genetic elimination of other panneuronally expressed Syt proteins did not alter these forms of exocytosis, indicating a non-Syt Ca2+ sensor functions for both facilitation and asynchronous release. In light of these findings, the presence of two presynaptic Ca2+ sensors can be placed in a biological context, a Syt1-based Ca2+ sensor devoted primarily to baseline synaptic transmission and a second non-Syt Ca2+ sensor for short-term synaptic plasticity and asynchronous release.
机译:Ca 2 + 流入突触前神经末梢通过触发快速同步融合和较慢的异步释放途径来激活突触小泡胞吐作用。此外,连续动作电位后Ca 2 + 的短暂升高与短期突触可塑性和促进囊泡融合的一种形式相关,称为促进。尽管突触小泡蛋白Synaptotagmin 1(Syt1)已被认为是同步融合的Ca 2 + 传感器,但是Ca 2 + 传感器的分子同一性可以介导促进和融合。异步发布是未知的。为了测试同步Ca 2 + 传感器Syt1或异步Ca 2 + 传感器是否参与促进过程,我们分析了果蝇中Syt1的遗传消除是否导致便利的伴随损害。我们的结果表明,Syt1充当冗余的Ca 2 + 传感器,以促进该过程,而异步的Ca 2 + 传感器则极大地促进了这种形式的短期可塑性。接下来,我们检查了果蝇Syt家族的其他成员是否在体内依赖Ca 2 + 的异步释放或促进功能。其他泛神经元表达的Syt蛋白的遗传消除并没有改变这些胞吐形式,表明非Syt Ca 2 + 传感器的功能促进和异步释放。根据这些发现,可以在生物学环境中放置两个突触前Ca 2 + 传感器,一个基于Syt1的Ca 2 + 传感器主要用于基线突触。传输和第二个非Syt Ca 2 + 传感器,用于短期突触可塑性和异步释放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号