首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight
【2h】

Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight

机译:短振幅高频机翼冲程决定了蜜蜂飞行的空气动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most insects are thought to fly by creating a leading-edge vortex that remains attached to the wing as it translates through a stroke. In the species examined so far, stroke amplitude is large, and most of the aerodynamic force is produced halfway through a stroke when translation velocities are highest. Here we demonstrate that honeybees use an alternative strategy, hovering with relatively low stroke amplitude (≈90°) and high wingbeat frequency (≈230 Hz). When measured on a dynamically scaled robot, the kinematics of honeybee wings generate prominent force peaks during the beginning, middle, and end of each stroke, indicating the importance of additional unsteady mechanisms at stroke reversal. When challenged to fly in low-density heliox, bees responded by maintaining nearly constant wingbeat frequency while increasing stroke amplitude by nearly 50%. We examined the aerodynamic consequences of this change in wing motion by using artificial kinematic patterns in which amplitude was systematically increased in 5° increments. To separate the aerodynamic effects of stroke velocity from those due to amplitude, we performed this analysis under both constant frequency and constant velocity conditions. The results indicate that unsteady forces during stroke reversal make a large contribution to net upward force during hovering but play a diminished role as the animal increases stroke amplitude and flight power. We suggest that the peculiar kinematics of bees may reflect either a specialization for increasing load capacity or a physiological limitation of their flight muscles.
机译:人们认为大多数昆虫会通过产生前沿涡流而飞行,该涡流通过冲程平移时仍会附着在机翼上。到目前为止,在检查的物种中,冲程幅度很大,并且当平移速度最高时,大多数气动力是在冲程的中途产生的。在这里,我们证明了蜜蜂使用了一种替代策略,即以相对较低的冲程幅度(≈90°)和较高的拍动频率(≈230Hz)盘旋。当在动态缩放的机器人上进行测量时,蜜蜂翅膀的运动学会在每个冲程的开始,中间和结束期间产生显着的力峰值,这表明在冲程反转时需要使用其他非稳定机制。当挑战者在低密度日光下飞行时,蜜蜂的反应是保持近乎恒定的翼拍频率,同时使行程幅度增加近50%。我们通过使用人工运动学模式检查了机翼运动变化的空气动力学后果,在这种运动学模式中,振幅以5°的增量逐渐增加。为了将冲程速度的空气动力学影响与振幅引起的空气动力学影响分开,我们在恒定频率和恒定速度条件下进行了此分析。结果表明,中风逆转过程中的不稳定力对悬停时的净向上力有很大贡献,但随着动物增加中风幅度和飞行力而发挥的作用减弱。我们认为,蜜蜂的特殊运动学可能反映了其增加负荷能力的专门化或它们的飞行肌肉的生理限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号