首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Transplanting allosteric control of enzyme activity by protein–protein interactions: Coupling a regulatory site to the conserved catalytic core
【2h】

Transplanting allosteric control of enzyme activity by protein–protein interactions: Coupling a regulatory site to the conserved catalytic core

机译:通过蛋白质之间的相互作用进行酶活性的变构控制移植:将调节位点与保守的催化核心偶联

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glycerol kinase from Escherichia coli, but not Haemophilus influenzae, is inhibited allosterically by phosphotransferase system protein IIAGlc. The primary structures of these related kinases contain 501 amino acids, differing at 117. IIAGlc inhibition is transplanted from E. coli glycerol kinase into H. influenzae glycerol kinase by interconverting only 11 of the differences: 8 residues that interact with IIAGlc at the allosteric binding site and 3 residues in the conserved ATPase catalytic core that do not interact with IIAGlc but the solvent accessible surface of which decreases when it binds. The three core residues are crucial for coupling the allosteric site to the conserved catalytic core of the enzyme. The site of the coupling residues identifies a regulatory locus in the sugar kinase/heat shock protein 70/actin superfamily and suggests relations between allosteric regulation and the active site closure that characterizes the family. The location of the coupling residues provides empirical validation of a computational model that predicts a coupling pathway between the IIAGlc-binding site and the active site [Luque, I. & Freire, E. (2000) Proteins Struct. Funct. Genet. Suppl. 4, 63–71]. The requirement for changes in core residues to couple the allosteric and active sites and switching from inhibition to activation by a single amino acid change are consistent with a postulated mechanism for molecular evolution of allosteric regulation.
机译:磷酸转移酶系统蛋白IIA Glc 变构抑制了大肠杆菌中的甘油激酶,而流感嗜血杆菌没有。这些相关激酶的主要结构包含501个氨基酸,相差117位。IIA Glc 抑制作用是通过仅相互转化11个差异:8个残基,从大肠杆菌甘油激酶移植到流感嗜血杆菌甘油激酶中。在变构结合位点与IIA Glc 相互作用的分子和保守的ATPase催化核心中的3个不与IIA Glc 相互作用的残基,但其可及溶剂的表面在其变小时减少绑定。这三个核心残基对于将变构位点偶联至酶的保守催化核心至关重要。偶联残基的位点确定了糖激酶/热休克蛋白70 /肌动蛋白超家族中的调节位点,并暗示了变构调节与表征该家族的活性位点封闭之间的关系。偶联残基的位置提供了计算模型的经验验证,该计算模型预测了IIA Glc 结合位点与活性位点之间的偶联途径[Luque,I.&Freire,E.(2000)Proteins结构。功能基因补充4,63–71]。对核心残基进行改变以结合变构位点和活性位点,以及通过单个氨基酸改变从抑制作用转变为激活作用的要求,与推测的变构调节分子进化机制相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号