首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response
【2h】

Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response

机译:一氧化氮和活性氧中间体在植物过敏反应中的信号相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitric oxide (NO) and reactive oxygen intermediates (ROIs) play key roles in the activation of disease resistance mechanisms both in animals and plants. In animals NO cooperates with ROIs to kill tumor cells and for macrophage killing of bacteria. Such cytotoxic events occur because unregulated NO levels drive a diffusion-limited reaction with O2 to generate peroxynitrite (ONOO), a mediator of cellular injury in many biological systems. Here we show that in soybean cells unregulated NO production at the onset of a pathogen-induced hypersensitive response (HR) is not sufficient to activate hypersensitive cell death. The HR is triggered only by balanced production of NO and ROIs. Moreover, hypersensitive cell death is activated after interaction of NO not with O2 but with H2O2 generated from O2 by superoxide dismutase. Increasing the level of O2 reduces NO-mediated toxicity, and ONOO is not a mediator of hypersensitive cell death. During the HR, superoxide dismutase accelerates O2 dismutation to H2O2 to minimize the loss of NO by reaction with O2 and to trigger hypersensitive cell death through NO/H2O2 cooperation. However, O2 rather than H2O2 is the primary ROI signal for pathogen induction of glutathione S-transferase, and the rates of production and dismutation of O2 generated during the oxidative burst play a crucial role in the modulation and integration of NO/H2O2 signaling in the HR. Thus although plants and animals use a similar repertoire of signals in disease resistance, ROIs and NO are deployed in strikingly different ways to trigger host cell death.
机译:一氧化氮(NO)和活性氧中间体(ROIs)在动植物抗病机制的激活中起关键作用。在动物中,NO与ROI协同作用以杀死肿瘤细胞并杀死巨噬细胞。之所以会发生这种细胞毒性事件,是因为不受控制的NO水平会导致与O2 -的扩散受限反应,从而生成过氧亚硝酸盐(ONOO -),这是许多生物系统中细胞损伤的介质。在这里,我们表明,在大豆细胞中,病原体诱导的超敏反应(HR)发生时不受控制的NO产生不足以激活超敏细胞死亡。人力资源仅由NO和ROI的均衡产生触发。此外,NO并非与O2 -而是由超氧化物歧化酶从O2 -生成的H2O2相互作用后,激活了超敏细胞死亡。升高O2 -的水平会降低NO介导的毒性,而ONOO -并不是超敏细胞死亡的介体。在心律失常期间,超氧化物歧化酶会加速O2 -向H2O2的歧化,从而最大程度地减少与O2 -反应产生的NO损失,并通过NO / H2O2的合作触发超敏性细胞死亡。但是,O2 -而不是H2O2是病原体诱导谷胱甘肽S-转移酶的主要ROI信号,并且是氧化爆发期间产生的O2 -的产生和分解速率。在HR中NO / H 2 O 2 信号的调制和整合中起着至关重要的作用。因此,尽管动植物在抗病性方面使用的信号类似,但ROI和NO的部署方式却截然不同,以触发宿主细胞死亡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号