首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >New infinite families of exact sums of squares formulas Jacobi elliptic functions and Ramanujan’s tau function
【2h】

New infinite families of exact sums of squares formulas Jacobi elliptic functions and Ramanujan’s tau function

机译:平方公式的精确和的新无限族Jacobi 椭圆函数和Ramanujan的tau函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
机译:在本文中,我们给出了两个无穷大的显式精确公式,这些公式将Jacobi(1829)的4和8平方恒等式分别推广为4n 2 或4n(n + 1)平方,而无需使用尖点形式。当n为奇数时,我们的24平方恒等式导致Ramanujan的tau函数τ(n)的公式不同。这些结果出现在Jacobi椭圆函数,Jacobi连续分数,Hankel或Turánian行列式,Fourier级数,Lambert级数,包含/排除,行列式的Laplace展开公式和Schur函数的设置中。在相同的设置下,我们还获得了许多其他无限的恒等式,类似于麦克唐纳德著作附录I中的η函数恒等式[Macdonald,I. G.(1972)Invent。数学。 15,91–143]。我们方法的一个特例产生了两个推测的证明[Kac,V. G.和Wakimoto,M.(1994),《数学进展》,编辑。 Brylinski,J.-L.,Brylinski,R.,Guillemin,V.&Kac,V.(BirkhäuserBoston, 马萨诸塞州波士顿),卷。 123,第415–456页]涉及代表的身份 一个正整数,其总和为4n 2 或 4n(n + 1)个三角数, 分别。我们最初获得16和24平方的身份 通过多个基本的超几何序列,古斯塔夫森的 Cℓ非终止 6φ5和定理和安德鲁斯的基本原理 Jacobi的4和8平方恒等式的超几何级数证明。我们 (在其他地方)对此应用了对称和Schur函数技术 证明相似无限族存在的原始方法 n 2 的平方恒和之和 n(n + 1)个正方形。我们的总和 超过8个平方的恒等式与的公式不同 Mathews(1895),Glaisher(1907),Ramanujan(1916),Mordell(1917, 1919年),哈迪(1918年,1920年),卡克(Kac)和胁本(Wakimoto)等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号