首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings
【2h】

Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings

机译:DNA灵活性的分子力学研究:骨架扭转角和碱基对开口的耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular mechanics studies have been carried out on “B-DNA-like” structures of [d(C-G-C-G-A-A-T-T-C-G-C-G)]2 and [d(A)]12·[d(T)]12. Each of the backbone torsion angles (ψ, φ, ω, ω′, φ′) has been “forced” to alternative values from the normal B-DNA values (g+, t, g-, g-, t conformations). Compensating torsion angle changes preserve most of the base stacking energy in the double helix. In a second part of the study, one purine N3-pyrimidine N1 distance at a time has been forced to a value of 6 Å in an attempt to simulate the base opening motions required to rationalize proton exchange data for DNA. When the 6-Å constraint is removed, many of the structures revert to the normal Watson-Crick hydrogen-bonded structure, but a number are trapped in structures ≈5 kcal/mol higher in energy than the starting B-DNA structure. The relative energy of these structures, some of which involve a non-Watson-Crick thymine C2(carbonyl)[unk]adenine 6NH2 hydrogen bond, are qualitatively consistent with the ΔH for a “base pair-open state” suggested by Mandal et al. of 4-6 kcal/mol [Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979) J. Mol. Biol. 135, 391-411]. The picture of DNA flexibility emerging from this study depicts the backbone as undergoing rapid motion between local torsional minima on a nanosecond time scale. Backbone motion is mainly localized within a dinucleoside segment and generally not conformationally coupled along the chain or across the base pairs. Base motions are much smaller in magnitude than backbone motions. Base sliding allows imino N—H exchange, but it is localized, and only a small fraction of the N—H groups is exposed at any one time. Stacking and hydrogen bonding cause a rigid core of bases in the center of the molecule accounting for the hydrodynamic properties of DNA.
机译:对[d(C-G-C-G-A-A-T-T-C-G-C-G)] 2和[d(A)] 12·[d(T)] 12的“ B-DNA样”结构进行了分子力学研究。每个主干扭转角(ψ,φ,ω,ω',φ')已从正常B-DNA值(g + ,t,g -,g -,t构型)。补偿扭转角的变化将大部分基本堆垛能量保留在双螺旋结构中。在研究的第二部分中,一次将一个嘌呤N3-嘧啶N1的距离强制设置为6,以模拟为合理化DNA的质子交换数据所需的碱基打开运动。去除6-Å约束后,许多结构恢复为正常的Watson-Crick氢键结构,但其中一些结构的能量比起始B-DNA结构高约5 kcal / mol。这些结构的相对能量(其中一些涉及非沃森-克里克胸腺嘧啶C2(羰基)[unk]腺嘌呤6NH2氢键)在质量上与Mandal等人建议的“碱基对开放态”的ΔH一致。 。 4-6kcal / mol [Mandal,C.,Kallenbach,N.R。&Englander,S.W。(1979)J.Mol.Biol.215:403-10]。生物学135,391-411]。这项研究中出现的DNA柔性图片描绘了骨架在纳秒级的局部最小扭转之间进行快速运动。骨干运动主要位于二核苷区段内,并且通常不沿着链或跨碱基对构象偶联。基本运动的幅度远小于骨架运动。碱基滑动允许亚氨基NH交换,但是它是局部的,并且在任何时候仅暴露一小部分NH基。堆积和氢键在分子中心形成碱基的刚性核,这说明了DNA的流体力学特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号